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We study on bright nonautonomous solitons of Bose-Einstein condensate analytically in a time-
dependent harmonic trap with an arbitrary time-dependent linear potential and complex potential.
The explicit ways to control dynamics of soliton are presented through observing the evolution of its
width, peak, and the motion of its center analytically. Furthermore, we present two-solitons solution in
generalized form to observe the collision of solitons conveniently.
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1. Introduction

There have been great interest in studying the various prop-
erties of ultra cold atoms with the experimental realization of
trapped Bose-Einstein condensates (BECs) in alkali atoms [1,2].
The formation and propagation of matter wave solitons are more
interesting dynamical feature in Bose-Einstein condensates, such
as dark solitons [3-8], bright solitons [9-12], and four-wave mix-
ing [13]. Recently, there are some experimental reports on solitons
in Bose-Einstein condensate (BEC) system [14-17], which would
inspire the studies of solitons in applications. To make soliton use
in practice, we must find some operations which affect the dy-
namics of soliton in BEC, such as trap potentials and interaction
between atoms and so on. Dynamics of solitons of condensate in
a harmonic trap and complex potential has been studied in many
papers [18]. When the frequency of harmonic trap is changed with
time and the interaction of atoms is varied via Feshbach resonance,
it is found that solitons can exist under some certain conditions,
and they evolve with varying amplitudes and speeds, which can
be seen as the nonautonomous solitons [19]. Then, how to manage
the evolution of solitons through controlling the related parame-
ters? The question deserves further research for soliton application.

At the mean-field level, the Gross-Pitaevskii equation (GPE)
governs the evolution of the macroscopic wave function of Bose-

* Corresponding author at: Science and Technology Computation Physics Labora-
tory, Institute of Applied Physics and Computational Mathematics, Beijing 100088,
China.

E-mail address: liu_jie@iapcm.ac.cn (J. Liu).

0375-9601/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2011.03.023

Einstein condensates at absolute zero temperature. Considering the
atoms transformed from condensates to thermal could, it is suit-
able to add a complex potential in GPE to describe its effects on
soliton of condensate [20]. Besides this, for atoms in the nK «~ mK
temperature regime, the effect of the Earth’s gravitational field is
by no means negligible especially in the case of magnetic trap-
ping [21]. To describe the effects of gravitational field or other
linear potentials, we can introduce an arbitrary time-dependent
linear potential in GPE to study the influence of them conveniently.
For the cigar-shaped condensate in harmonic trap, one can make
the radial frequency much larger than the axial frequency and
strongly confine the radial motion. The axial of cylindrical har-
monic trap is along the x direction which can be either confining
or expulsive. Then, dynamics of the condensate can be described
well by the following generalized (1 + 1)-dimensional GPE given
as
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where R(t) is nonlinearity management parameter which describes
the variation of scattering length and can be controlled well by
Feshbach resonance [22], G(t) is appropriate gain (G(t) < 0) or
loss (G(t) > 0) terms which can be phenomenologically incorpo-
rated to account for the interaction of atomic cloud or thermal
cloud. M(t)x* means a time-dependent harmonic trap and f(t)x
stands for an arbitrary time-dependent linear potential. Note that
we are using standard notation, with both the fields and coordi-


http://dx.doi.org/10.1016/j.physleta.2011.03.023
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:liu_jie@iapcm.ac.cn
http://dx.doi.org/10.1016/j.physleta.2011.03.023

1840 L.-C. Zhao et al. / Physics Letters A 375 (2011) 1839-1842

nates dimensionless. The similar equations has been solved exactly
by many different methods in [19]. However, as far as we know,
different methods bring different soliton solutions, and there still
lack systemic studies on the dynamics and kinematics of solitons.
To make soliton into application, it is meaningful to realize soliton
management theoretically and experimentally.

In this Letter, we present single soliton of BECs in a time-
dependent harmonic trap through Darboux transformation method,
with an arbitrary time-dependent linear potential and complex
potential. Dynamics and kinematics of solitons are studied in de-
tail, through observing its shape and motion analytically. Based on
the expressions which describe the evolution of soliton’s proper-
ties, and the compatibility condition, soliton management could be
realized theoretically. It is believed that these results would stimu-
late some experiments to manage soliton. To observe the collision
of solitons, we present two-soliton solution in generalized form.

2. The dynamics and kinematics of single bright soliton

According to the Painlevé analysis [23], R(t) and G(t) are not
allowed to be space-dependent. We find that under the condi-
tion R(t) = gexp [f G(t) —4Cy(t)dt] (g is a real non-zero number),

where C(t) satisfies 4C§(t) + % = M(t), soliton solution of

Eq. (1) can be achieved by the Darboux transformation method
[24] from the Lax-pair!
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where A¢, o, B8, and g are real numbers which relate with the
initial condition of soliton, such as initial coordinate, initial veloc-
ity, and initial shape. This is a normal solution which can be used
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and the overbar denotes the complex conjugate.

to study the properties of bright solitons in BEC trapped in many
kinds of potentials and many other systems. Therefore, we are
convinced that the soliton can exist in a time-dependent poten-
tial with the interaction strength changes with time, which agrees
with Serkin and Kumar [19]. More importantly, in this Letter, we
will try to find explicit ways to control the evolution of soliton.
From the soliton solution, we can calculate nonautonomous soli-
ton’s peak, width and the motion of its wave center by assuming
that the maximum value of density correspond to the wave center,
and the half-value width is the width of soliton. The evolution of
them can be given as following (with C,(t) is a real function): the
evolution of width is

W() = M exp[/ 4C2(t)dt], (3)
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the evolution of its peak is

2 42
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and the motion of its wave center is
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From the explicit expressions which describe the main properties
of solitons, it is convenient to study the effects of each physical
operation on the nonautonomous solitons. When the explicit oper-
ations are chosen, the corresponding soliton solution can be given
directly. Moreover, the evolution of soliton’ shape and motion can
be investigated analytically through the above expressions which
describe them. This provides many possibilities to control the evo-
lution of soliton exactly. The following discussion can be made
from the above expressions.

(1) From Eq. (3), we know that soliton’ width is determined by
the parameter Cy(t). When C,(t) > 0, its width will be compressed
and vice versa; when Cy(t) vanishes, its width will keep invariant.
If the evolution pattern of soliton is chosen, the expression of Cy(t)
is made certain. Then R(t) = gexp[[ G(t) — 4Cx(t)dt] can tells us

how to manage Feshbach resonance, and 4C§(t) + % = M(t)
presents explicit way to manage the trap potential, which can be
realized through modulating the ratio of axial oscillation to radial
oscillation. Therefore, we can know how to adjust the related op-
erations to control the evolution of soliton’s width.

(2) From Eq. (4), it is known that the peak of soliton is de-
termined by the parameters C,(t) and G(t). Considering the two
factors relate with trap potential and complex potential, we infer
that the peak and width of the bright soliton can be controlled
well by adjusting the experiment parameters, including the ratio
of axial oscillation to radial oscillation and exchanging atoms be-
tween the condensates and thermal cloud. Especially, when G(t) =
—4C,(t), the peak of soliton will become unchanged as a con-
stant %. For an example, when M(t) = A%/4, then C,(t) can be
A/4, if G(t) = —A, then the peak of soliton will be a constant,
which agrees with the result in [21]. It is well known that soli-
ton comes from the balance between nonlinearity and dispersion
effects. However, the dispersion is unchanged here, the condition
we find is just the balance of nonlinearity and gain term for con-
stant peak.

(3) From Eq. (5), one can know which factors affect the mo-
tion of soliton. Moreover, one can calculate soliton’s velocity, and
acceleration as following

vc(t)=4[ / ?ef‘“z(”df dr+ﬁ] exp[ / —4C2(t)dt]
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