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Tropical limit for macroscopic systems in equilibrium defined as the formal limit of Boltzmann constant 
k → 0 is discussed. It is shown that such tropical limit is well-adapted to analyze properties of systems 
with highly degenerated energy levels, particularly of frustrated systems like spin ice and spin glasses. 
Tropical free energy Ftr(T ) is a piecewise linear function of temperature T , tropical entropy is a piecewise 
constant function and the system has energy for which tropical Gibbs’ probability has maximum. 
Properties of systems in the points of jump of entropy are studied. Systems with finite and infinitely 
many energy levels and phenomenon of limiting temperatures are discussed.
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1. Introduction

Singular (nonanalytic) limits of various types have shown up 
many times in physics and mathematics. Maslov’s dequantization 
[1–3], ultra-discrete integrable systems [4–8] and tropical geom-
etry [9–13] are three apparently disconnected fields where such 
a limit was most actively studied during the last twenty years. 
Nowadays all of them are viewed as the different faces of the 
so-called tropical mathematics (see e.g. [14–16]). Tropical limit is 
characterized by a highly singular limiting behavior of the type x =
exp

( xtr
ε

)
as the parameter ε → 0. Elements xtr form an idempotent 

semiring with the tropical addition ⊕ and multiplication � defined 
by x1tr ⊕ x2tr = limε→0

(
ε ln

(
exp x1tr

ε + exp x2tr
ε

)) = max{x1tr, x2tr}
and x1tr �x2tr = limε→0

(
ε ln

(
exp x1tr

ε · exp x2tr
ε

)) = x1tr + x2tr [9–16].
It was already noted in [13,17–21] that statistical physics seems 

to be the part of physics most naturally adapted to consider the 
tropical limit. Indeed, free energy F of the macroscopic system in 
equilibrium is given by the formula [22]

F = −kT ln
∑

n

gn exp

(
− En

kT

)
(1.1)

where k is the Boltzmann constant, T is the absolute tempera-
ture, {En} is the energy spectrum of the system, gn are statistical 
weights (degeneracies) of the corresponding levels En and the sum 
is performed over different energy levels. Thus, in the limit kT → 0
one has the tropical sum in the r.h.s. of the formula (1.1) and 
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En and F (kT → 0) become elements of idempotent semiring re-
ferred to in [21] as the thermodynamic semiring. In the papers 
[13,19–21] the tropical limit was identified with the limit T → 0. 
With such a choice tropical free energy is equal to Emin and en-
tropy Str = 0 for the systems with finite gn .

In this paper we argue that the formal limit k → 0 is a more 
appropriate avatar of tropical limit in statistical physics. At first 
glance the separation of k and T seems to be artificial and irrele-
vant since the r.h.s. of (1.1) and Gibbs’ distribution

wn =
exp

(
− En

kT

)
∑

m gm exp
(
− Em

kT

) (1.2)

contain only the product kT . It is indeed so for systems with finite 
gn .

An observation is that there exists a wide class of systems with 
exponentially large degeneracies gn for which the situation is quite 
different. In 1935 L. Pauling [23] showed that the degeneracy of 
the ground state of the ice is given by g0 = exp(N ln 3

2 ), where 
N is the number of molecules. So the ice has (residual) entropy 
S0 ∼ kN ln 3

2 at T = 0 that is in good agreement (with 2–3% ac-
curacy) with experimental data [24]. Several other systems like 
spin ices and spin glasses have exponentially large degeneracies 
of ground and excited states of the type gn = exp(an N) with cer-
tain constants an (see e.g. [22,25–33]). In the thermodynamic limit 
N → ∞ such gn have a typical tropical behavior. A natural way to 
formalize this limit is to represent exponentially large degeneracies 
as gn = exp Sn

k with finite Sn and k → 0. Physically it corresponds 
to the limit N → ∞, k → 0 with k · N =constant (gas constant R) 
and Sn = an R .
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Thus, representing the degeneracies gn as gn = exp Sn
k and 

defining Ftr = limk→0 F , one has at T > 0

Ftr(T ) = −T
∑

n

⊕
(

− Fn

T

)
= min{F1, F2, . . . , Fn, . . .} (1.3)

where Fn = En −T Sn is a “microscopic” free energy associated with 
the energy level En . So Ftr(T ) is a piecewise linear function of 
temperature T . This leads to various consequences. For instance, 
the tropical entropy Str = − ∂ Ftr

∂T = Snmin where nmin is the index 
of minimal free energy Fnmin at temperature T in the case when 
the minimum is attained only once. So Str is a piecewise constant 
function of T . The value Str(T = 0) is the residual entropy of the 
macroscopic system at T = 0. At certain singular values of T Str
exhibits jumps (entropy drop). Depending on the system it hap-
pens either at positive or negative temperatures.

These properties of the tropical limit k → 0 trace quite well 
certain characteristic features of various frustrated systems simi-
lar to spin ices and spin glasses. In contrast in the tropical limit 
defined as T → 0 [13,19–21] one has F (T → 0) = E1 and the 
above-mentioned properties are not visible.

This is the main evidence in favor of the definition of the trop-
ical limit as k → 0. The second reason is that in such a limit the 
basic thermodynamic equations, like the first law dE = T dS − pdV
and relations between thermodynamic potentials, remain unal-
tered leaving temperature T to be a free positive or negative pa-
rameter. In addition the limit k → 0 resembles very much that of 
h̄ → 0 in Maslov’s dequantization.

Tropical limit of Gibbs’ distribution (1.2) has rather interesting 
properties too. Tropical probability wn,tr = limk→0(k · ln wn) takes 
values in the interval (−∞, 0] and is equal to

wn,tr = −Sn + Ftr − Fn

T
. (1.4)

The tropical probability Wn,tr for the system to have energy En is

Wn,tr = wn,tr + Sn = Ftr − Fn

T
(1.5)

and it is normalized by the condition 
∑

n ⊕Wn,tr = 0.
These tropical Gibbs’ distributions describe fine structure of 

the states with exponentially small usual probabilities wn ∼
exp

(
− Sn

k

)
. It is shown that tropical probabilities and entropy have 

a peculiar behavior at the singular values T ∗ of temperature at 
which jump of Str is observed.

Systems with finitely many energy levels are considered as 
illustrative examples. Tropical limit of the systems with infinite 
number of energy levels, the phenomenon of limiting temperatures 
and existence of intervals of forbidden temperatures are discussed 
too.

It is noted that the limit k → 0 viewed as the limit of van-
ishing white noise for systems with finite degeneracies has been 
discussed in a different context in [34].

The paper is organized as follows. In Section 2 general def-
initions and formulas are presented. Singularities appearing in 
tropical limit are analyzed in next Section 3. Systems with finite 
number of energy levels are considered in Section 4. In Section 5
the systems with infinitely many energy levels bounded and un-
bounded from below and the existence of limiting temperatures 
are discussed.

2. Tropical Gibbs’ distribution and free energy

So we will consider macroscopic systems in equilibrium and 
will study their limiting behavior as (formally) k → 0. Introducing
the energy level “entropy” Sn = k ln gn and assuming that Sn are 
finite, one has the following form of partition function

Z =
∑
n≥1

exp

[
1

k

(
Sn − En

T

)]
=

∑
n≥1

exp

(
− Fn

kT

)
(2.1)

where Fn ≡ En − T Sn is the “energy-level” free energy and energies 
En are ordered as 0 < E1 < E2 < . . . . One observes that the de-
generacies gn = exp Sn

k with finite Sn > 0 and Boltzmann weights 
exp

(
− En

kT

)
behave quite differently as k → 0. So in the tropical 

limit we will have sort of Bergmann’s logarithmic limit set [35].
Tropical limit of probability wn , in general, is naturally asso-

ciated with its singular behavior of the form wn = w̃n · exp wn,tr
ε

with small positive parameter ε, 0 < w̃n ≤ 1 and wn,tr =
limε→0 (ε ln wn). Tropical probability wn,tr varies in the interval 
(−∞, 0]. The interval 0 < wn ≤ 1 collapses into {0} while ex-
ponentially small usual probabilities wn are represented by the 
whole semi-line (−∞, 0) for wn,tr and numbers w̃n . The mean-
ing of the quantities wn,tr and w̃n is clarified by the formula 
ln wn = wn,tr

ε + ln w̃n + . . . . So singular behavior under considera-
tion is characterized by a simple pole behavior of ln wn as a func-
tion of the small parameter ε: wn,tr is the residue at this pole 
while ln w̃n is the first regular nondominant term. In generic reg-
ular case it is sufficient to consider the dominant pole term and, 
hence, the tropical probability wn,tr . Contribution of nondominant 
term ln w̃n becomes crucial, as we shall see, in the singular situa-
tions when limit ε → 0 ceases to be uniquely defined.

Under the assumption that all Fn are distinct the tropical limit 
of Gibbs’ probabilities (1.2) is given by (ε = k)

wn,tr = − En

T
− max

{
− F1

T
,− F2

T
, . . .

}

= −Sn − Fn

T
+ min

{
F1

T
,

F2

T
, . . .

}
(2.2)

Denoting 
( F

T

)
min := min

{
F1
T , F2

T , . . .
}

, one gets

wn,tr = −Sn − Fn

T
+

(
F

T

)
min

. (2.3)

Normalization condition for these tropical probabilities is the limit 
k → 0 of the condition 

∑
n gn · wn = 1 and it is given by∑

n

⊕ (
Sn + wn,tr

) = 0. (2.4)

In particular, for n = n0 such that Fn0
T = ( F

T

)
min , one has

wn0,tr = −Sn0 . (2.5)

So, the entropies Sn0 are, in fact, the tropical Gibbs’ probabili-
ties to find the system in certain state with energy En0 . Probability 
Wn for the system to have energy En at small k and T > 0 is 
equal to Wn = gn exp wn,tr

k = exp Wn,tr
k and, hence, tropical proba-

bility Wn,tr for the system to have energy En is equal to

Wn,tr = Ftr − Fn

T
. (2.6)

These tropical probabilities obey the normalization condition ∑
n ⊕Wn,tr = max{Wn,tr} = 0. Also in the limit k → 0 for usual 

probabilities one gets Wn0 = 1 and Wn �=n0 = 0 and the tropical 
energy Etr of the system is

Etr = lim
k→0

⎛
⎝∑

n≥1

Wn En

⎞
⎠ = En0 . (2.7)

The tropical Gibbs’ distribution provides us with the fine descrip-
tion of the energy levels.

Tropical limit of the free energy (1.1) is given by
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