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Exact explicit rational solutions of two- and one-dimensional multicomponent Yajima–Oikawa (YO) 
systems, which contain multi-short-wave components and single long-wave one, are presented by using 
the bilinear method. For two-dimensional system, the fundamental rational solution first describes the 
localized lumps, which have three different patterns: bright, intermediate and dark states. Then, rogue 
waves can be obtained under certain parameter conditions and their behaviors are also classified to 
above three patterns with different definition. It is shown that the simplest (fundamental) rogue waves 
are line localized waves which arise from the constant background with a line profile and then disappear 
into the constant background again. In particular, two-dimensional intermediate and dark counterparts 
of rogue wave are found with the different parameter requirements. We demonstrate that multirogue 
waves describe the interaction of several fundamental rogue waves, in which interesting curvy wave 
patterns appear in the intermediate times. Different curvy wave patterns form in the interaction of 
different types fundamental rogue waves. Higher-order rogue waves exhibit the dynamic behaviors that 
the wave structures start from lump and then retreat back to it, and this transient wave possesses the 
patterns such as parabolas. Furthermore, different states of higher-order rogue wave result in completely 
distinguishing lumps and parabolas. Moreover, one-dimensional rogue wave solutions with three states 
are constructed through the further reduction. Specifically, higher-order rogue wave in one-dimensional
case is derived under the parameter constraints.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Rogue wave phenomena that “appear from nowhere and disap-
pear without a trace [1]”, have recently become one of the most 
active and important research areas on both experimental obser-
vations and theoretical analysis, since it exists in various differ-
ent fields, including ocean [2], optical systems [3–5], Bose–Einstein 
condensates [6,7], superfluids [8], capillary waves [9], atmosphere 
[10], plasma [11,12] and even in finance [13]. From the mathemat-
ical description, rational solutions play a key role in the interpre-
tation of the mechanisms underlying the formation and dynamics 
of rogue waves. The first-order and most fundamental rational so-
lution for nonlinear Schrödinger (NLS) equation was discovered by 
Peregrine [14]. Such a solution has the peculiarity of being local-
ized in both space and time, and its maximum amplitude reaches 
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three times the constant background. The hierarchy of higher-order 
rational solutions has been found [15–24], in particular, in the 
framework of the integrable 1D NLS equation. These higher-order 
waves were also localized in both coordinates, and could exhibit 
higher peak amplitudes or multiple intensity peaks.

Recently, apart from the NLS equation, exact rogue wave solu-
tions have been explored in a variety of nonlinear integrable sys-
tems such as the Hirota equation [25,26], the Sasa–Satsuma equa-
tion [27,28] and the derivative NLS equation [29–31]. More impor-
tantly, the relevant studies were also extended to coupled systems 
which usually involve more than one component [7,32–47]. It was 
shown that compared with uncoupled systems, vector rogue wave 
solutions exhibit some novel structures such as dark rogue wave. 
In Refs. [32–34], analytical rational solutions for the coupled NLS 
system allowed not only general vector Peregrine soliton but also 
bright- and dark-rogue waves.

Moreover, the two-dimensional analogue of rogue wave, ex-
pressed by more complicated rational form, has been recently 
reported in the Davey–Stewartson (DS) equation [48,49] and 
Kadomtsev–Petviashvili-I equation [20,50]. In two kinds of DS sys-
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tems [48,49], the fundamental rogue waves are line rogue waves 
which arise from the constant background and then retreat back 
to the constant background again. More general rational solutions 
were divided into two categories: multi-rogue waves and higher 
order ones. Multi-rogue waves describe the interaction between 
individual fundamental rogue waves, whereas higher order rogue 
waves exhibit different dynamics such as the wavepacket rising 
from the constant background but not decaying back to it. There-
fore, a natural motivation is to investigate rational solutions in 
two-dimensional multicomponent system. Specifically, it is reason-
able to expect the appearance of a two-dimensional dark rogue 
wave counterpart, which, to the best our knowledge, was never 
reported before.

Coming back to the one-dimensional case, rogue waves were 
usually obtained from homoclinic solutions by taking certain lim-
its [25–27,29,31,37]. Indeed, most of literature devoted to the 
explicit expressions of rational solutions still resulted from the 
related homoclinic ones. The construction of higher-dimensional
rational solutions may provide an alternative method for finding 
lower-dimensional rogue wave through dimension reduction di-
rectly [48,49]. In other words, one can generate the above rational 
solutions of lower-dimensional models from higher-dimensional
ones with the parameter constraints. Application of reduction 
method to clarify the rational solution’s relation between two dif-
ferent dimensions is also the aim of the present work.

In this paper, we focus on the two-dimensional multicompo-
nent Yajima–Oikawa (YO) system, or the so-called 2D coupled 
long-wave–short-wave resonance interaction system in which it 
comprises multi short-wave components and a single long-wave 
component [51–56]. The long-wave–short-wave resonance inter-
action is a fascinating physical process in which a resonant in-
teraction takes place between a weakly dispersive long-wave and 
a short-wave packet when the phase velocity of the former ex-
actly or almost matches the group velocity of the latter. This phe-
nomenon has been predicted in plasma physics [57,58], nonlinear 
optics [59,60] and hydrodynamics [61–63]. The rogue wave solu-
tions to the 1D YO system had recently been derived by using 
Hirota bilinear method [64] and Darboux transformation [39,40]. 
A special note of importance is that the coupled dark- and bright-
field counterparts of the Peregrine soliton were demonstrated in 
[38–40].

The plan of the paper is as follows. In Section 2, we present 
exact and explicit rational solution for the two-dimensional multi-
component YO system by using the bilinear method. In Section 3, 
dynamics of two-dimensional rational solution including funda-
mental lumps and general (multi- and higher-order) rogue waves 
are discussed in detail. The one-dimensional rogue wave solution 
is derived through the further reduction and its dynamics are stud-
ied in Section 4. The conclusion is given in the last section.

2. Explicit rational solution in the determinant form

The two-dimensional multicomponent YO system:

i(S(�)
t + S(�)

y ) − S(�)
xx + L S(�) = 0, � = 1,2, · · · , M, (1a)

Lt = 2
M∑

�=1

σ�|S(�)|2x , (1b)

where σ� = ±1, S(�) and L indicate the �th short-wave and 
long-wave components, respectively. When the wave propagation 
is independent of y coordinate Eq. (1) is reduced to the one-
dimensional multicomponent YO system. By the dependent vari-
able transformation:

S(�) = G(�)
0

G(�)

F
, L = h − 2

∂2

∂x2
log F , (2)

where G(�)
0 = ρ� exp[i(α�x + β� y + γ�t)], γ� = h − β� + α2

� and 
α�, β�, ρ� and h are real parameters for � = 1, 2, · · · , M , the two-
dimensional YO system can be cast into the bilinear form,

[i(Dt + D y − 2α�Dx) − D2
x ]G(�) · F = 0, (3a)
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2
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where F is a real variable, G(�) are complex variables, ∗ denotes 
the complex conjugation and D is Hirota’s bilinear differential op-
erator.

Theorem 1. The two-dimensional multicomponent YO system has ratio-
nal solution (2) with F and G(�) given by N × N determinants

F = τ ′(n)

∣∣∣
n=0

, G(�) = τ ′(n(�) + 1)

∣∣∣
n=0

, (4)

where (n) ≡ (n(1), n(2), · · · , n(M)), (n(�) ± 1) ≡ (n(1), n(2), · · · , n(�) ±
1, · · · , n(M)) and n = 0 represents n(1) = n(2) = · · ·n(�) · · · = n(M) = 0, 
τ ′(n) = det≤i, j≤N

(
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i, j(n)
)

and the matrix elements are defined by
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1
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Here the operator Ai, j = ∑ni
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i + ∑M
�=1
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pi−iα�
)ni−k ×∑n j
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where pi and cik are arbitrary complex constants, and ni is an arbitrary 
positive integer.

The proof of this theorem is given in Appendix A. It is empha-
sized that these rational solutions can also be expressed in term of 
Schur polynomials as shown in [48,49]. From the appendix in [48,
49], one can know that the nonsingularity of rational solutions ex-
ists if the real parts of wave numbers pi (1 � i � N) are all positive 
or negative.

3. Rational solutions for two-dimensional YO system

In this section, we present the dynamics analysis of rational 
solutions to two-dimensional YO system in detail.

3.1. Fundamental rational solutions

As the simplest rational solution, one-rational solution of first 
order is given by taking N = 1 and n1 = 1,
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, (7)
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