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Strong temperature gradients introduce a major external agency into the wall-bounded turbulent flows. 
In these flows, the temperature field and the turbulent velocity field are highly correlated. In fact, 
standard RANS turbulent models are not able to accurately reproduce these flows. In order to improve 
the performance of the models, we need to understand how the energy is produced, transferred, and 
dissipated in a strong anisothermal wall-bounded flow. This letter presents a first detailed investigation 
on the roles played by each contributor in the energy transfer equation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

High Reynolds number turbulent flows in a wall bounded set-
ting have many important scientific and engineering applications 
(see for example, [1]). Understandably, almost all publications have 
focused on the isothermal turbulence. The strong anisothermal 
flows, however, have received very limited attention because of the 
significant complexity introduced by the high temperature gradi-
ent. There is an urgent need to fill this gap since the anisothermal 
channel flows are directly relevant to the design of the solar en-
ergy devices. This letter is an effort to improve our understand-
ing on the basic physics aspects of wall-bounded anisothermal 
flows.

The detailed turbulent kinetic energy transfer processes are a 
fundamental information for both isotropic and wall bounded tur-
bulent flows. The dynamic equation for the energy transfer pro-
cess, constructed from the Navier–Stokes equations, requires the 
input of three-dimensional velocity flows. Obtaining such time-
dependent fields is a major challenge for the laboratory experi-
ments as well as for the closure theories. Indeed, while the labora-
tory experiments can be carried out in any setting, the data collec-
tion is often limited by the diagnostic methodologies. On the other 
hand, the closure theories can be used to inspect high Reynolds 
number flows for incompressible [2] and weakly-compressible [3]
flows. Unfortunately, these closure theories are restricted to the 
homogeneous and isotropic turbulence.
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This investigation will utilize the databases from thermal di-
rect numerical simulations. This is a well-established procedure 
for studying the energy transfer process. Numerical simulations 
have demonstrated their capabilities in providing high quality data 
for studying the energy transfer process. The previous works on 
homogeneous, isotropic turbulence have confirmed Kolmogorov’s 
assumptions on the locality of the energy transfer [4] and inter-
acting scales [5,6]. More recently, Domaradzki et al. [7], Marati 
et al. [8], Bolotnov et al. [9], and Cimarelli et al. [10,11] have 
extended the energy transfer analysis into the isothermal wall 
bounded flows.

To the best knowledge of the authors, the energy transfer anal-
ysis has not been performed for anisothermal wall turbulent flows. 
The high gradient of the temperature field introduces some inter-
esting new physics [12]. The local Reynolds numbers are signif-
icantly different at the hot and cold sides. Furthermore, it was 
found that the Kolmogorov scaling is no longer valid when the 
flow is submitted to strong dilatation caused by the temperature 
gradients [13]. This phenomenon is analogous to those turbulent 
flows subject to external agencies [14–16]. As a result, it is ex-
pected that the spectral energy analysis of the anisothermal flows 
should offer fresh insights on how the energy is moved about 
within the channel. This letter will provide detailed information 
on all-important components in the energy transfer process: the 
production, nonlinear transfer, and viscous effects terms.

The letter is organized as follows. The formulation of the phys-
ical problem will be discussed in the next section. The detailed 
energy transfer study can be found in Section 3. Finally, the con-
clusion is given in Section 4.
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2. Equations and numerical dataset

2.1. Governing equations

The thermal direct numerical simulations are based on the 
standard governing equations (see for example, [17]):
Mass conservation
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Energy conservation
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Ideal gas law

Pth = ρrT (4)

The thermodynamical pressure is constant in space

∂ Pth

∂xi
= 0 (5)

The transport coefficients are given by
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Pr = 0.7 = μC p

λ
(6)

Here, the fluid viscosity follows the well-known Sutherland law 
and the conductivity is computed using the Prandtl number 
(Eq. (6)). In order to isolate the effects of the temperature gra-
dient, we will restrict our attention to a low Mach number flow 
so that the pressure dilatation can be ignored. This assumption 
split the pressure into two parts. The main part, called the ther-
modynamical pressure, represents the compressibility part of the 
pressure. The dynamical pressure is the minor part and is linked to 
the momentum. The fluid material is air. The anisothermal flow is 
established by having the two plates with different temperatures 
at the bottom (T1 = 293 K) and top (T2 = 586 K) of the channel 
(Fig. 1). The distance between the two plates (Ly) equals to 2h, 
where h = 15 mm. The other domain lengths (Lx and Lz), in the 
longitudinal and transversal directions, are equal to 4πh and 2πh, 
respectively. It should be noted that the x and z coordinates are 
the periodic directions of the channel.

The governing equations are solved using the Trio_U software, 
which is a finite volume solver [18]. The velocity advective scheme 
is a centered fourth order one, and the scalar advective scheme 
is an upwind third order one. The flow rate is imposed to obtain 
a mean turbulent Reynolds number of Reτ = 180. The Reynolds 
number is given by Reτ = Uτ h

υ = Rehot
τ +Recold

τ
2 . Here Uτ is the mean 

friction velocity; Rehot
τ and Recold

τ are the Reynolds numbers de-
fined at the hot and cold walls. The mesh has 192 × 140 × 288
cells with a first cell size �+

y = 0.25. The data collections are car-
ried out during 5.657 s of the computation, which corresponds to 
50 characteristic times of the hot side, tc = h

Uτ
= 0.11428 s (tc is 

greater at the hot side than that at the cold side). The sample time 
is equal to 0.01tc .

Fig. 1. Channel configuration.

Fig. 2. Mean longitudinal velocity compared to Kim et al. [19].

Fig. 3. Root mean square velocity fluctuations and velocity correlation compared 
with Kim et al. [19].

2.2. Numerical simulation validation at the isothermal limit

In this and next subsection, our numerical process will be val-
idated. First of all, we performed a direct numerical simulation 
(DNS) of an isothermal channel flow at a turbulent flow with its 
Reynolds number Reτ = 180, which is the same condition of the 
flow previously computed by Kim et al. [19]. The comparisons be-
tween two simulations are presented in Figs. 2 and 3, where the 
results from current simulations are represented by dots and their 
counterparts from Kim et al. are denoted by lines. It is clear that 
the mean velocity profiles and root mean square velocity fluctua-
tions are in excellent agreement. As a result, our numerical simu-
lations are validated at the isothermal limit.
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