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By the nonlocal theory, the nonlinear equations for double-layered nanoplates (DLNP) with different 
boundary conditions are established. The relation between aspect ratio and nonlinear frequencies with 
fixed mode amplitude is discussed. This relation for two vibration modes presents completely distinct 
trends. The novel fact is observed that there exists a point P where nonlinearity is weakest for the 
fundamental mode. Furthermore, we notice that P only appears for clamped movable edge when 
neglecting the nonlocal effect, which is substantially different from the other boundary conditions. 
It should distinguish whether the edge is movable or immovable for studying nonlinear dynamics of 
DLNP.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Since the popularity of carbon nanotubes and the pioneering
work by Iijima [1], considerable researchers are engaged in the 
fundamental studies of nanostructures [2–5]. Nanoscience becomes 
a vigorous academic field [6–8]. With the superior performance for 
nanostructures over traditional engineering materials, many po-
tential applications can be expected in atomic-force microscope, 
biosensors and field emitters [9,10]. Since the manufacturing and 
the design of nano devices for micro/nano electromechanical sys-
tems (MEMS/NEMS) heavily depend on the insights of the mechan-
ical properties, researches have been performing widely on the 
dynamic behaviors of nanostructures [11–13].

With the difficulties in controlled experiments on nanoscale 
[14], theoretical analysis of mechanical behaviors of nanostruc-
tures is performed widely. However, molecular dynamics (MD) is 
time consuming and unable to deal with large-sized nanostruc-
tures such as nanoplates. Consequently, the nonlocal continuum 
theory initiated by Eringen [15,16] becomes an effective and reli-
able approach to model the nanostructures mathematically, which 
can accurately capture the small scale effect of nanoscale materi-
als.
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The mechanical behaviors of nanostructures have been the pri-
mary subjects of current studies. Reddy [17] presented
the formulation of nonlinear dynamical equations for the classi-
cal and first shear deformation plates. Liew et al. [18] proposed 
a continuum-based plate model and derived the natural frequen-
cies of multi-layered graphene sheets. Murmu and Pradhan [19]
investigated the vibration response of single-layered graphene 
sheets embedded in elastic medium. The nonlinear dynamical 
properties of nanotubes have been studied by several researchers 
[20–23]. Wang and Li [24] investigated the static bending of 
nanoplates with the nonlocal Mindlin and Kirchhoff plate mod-
els. However, there are few reports about the nonlinear analysis 
of double-layered nanoplates (DLNP) comparing with abundant re-
searches on the nonlinear dynamical behaviors of classical systems 
[25,26]. Recently, we investigated the nonlinear vibration proper-
ties of DLNP based on the nonlocal continuum theory [27].

In the present paper, based on the nonlocal theory, the nonlin-
ear governing equations are derived for DLNP with four different 
boundary conditions. The analytical expressions of nonlinear vi-
bration frequencies are obtained. We mainly discussed the relation 
between the aspect ratio and the nonlinear fundamental frequency 
for the DLNP with fixed mode amplitude. From the results, some 
novel phenomena can be observed. A minimum point P at which 
the nonlinearity is weakest can be found on the above-mentioned 
relation’s curves. Furthermore, the existence and position of the 
point P are strongly dependent on the type of boundary condi-
tions and the nonlocal parameter.
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Fig. 1. Schematic diagram of double-layered nanoplates.

2. Dynamical equations of nonlinear vibration

The DLNP with the thickness h is shown in Fig. 1. According to 
the nonlocal continuum theory by Eringen [15,16], the constitutive 
relation of nonlocal elasticity is expressed as the following integral 
form:

σkl(x) =
∫
V

α
(∣∣x − x′∣∣, γ )

τkl
(
x′)dV

(
x′), (1)

where σkl and τkl are the nonlocal stress tensors and local stress 
tensors, respectively. The kernel function α(|x − x′|, γ ) is the non-
local modulus which describes the influence of the strain at each 
point x′ of the entire body on the stress of the reference point x. 
Considering the simplicity and the convenience for the applications 
on the elasticity problems, the kernel function is usually taken as

α
(|x|, γ ) = (

2π l2γ 2)−1
K0(

√
x · x/lγ ), (2)

where K0 is the modified Bessel function, l is the external char-
acteristic length (e.g. crack length, wavelength), γ = e0a0/l, where 
e0 is a constant appropriate to each material and is determined 
by the experiments or atomic lattice dynamics, and a0 the inter-
nal characteristic length (e.g. length of C–C bond, lattice spacing, 
granular distance).

For the nonlocal viscoelastic Kirchhoff’s plate [27–30], the con-
stitutive relation can be expressed as the following form:

(
1 − μ2∇2)

⎧⎨
⎩

σ nl
xx

σ nl
yy

σ nl
xy

⎫⎬
⎭

=
⎡
⎢⎣

E
1−υ2 (1 + g ∂

∂t )
υE

1−υ2 (1 + g ∂
∂t ) 0

υE
1−υ2 (1 + g ∂

∂t )
E

1−υ2 (1 + g ∂
∂t ) 0

0 0 2G(1 + g ∂
∂t )

⎤
⎥⎦

⎧⎨
⎩

εxx

εyy

εxy

⎫⎬
⎭ ,

(3)

where σ nl is the nonlocal stress tensor, μ = e0a0 the nonlocal pa-
rameter which can describe the scale effect of nanostructures, E , 
G and υ denote the Young’s modulus, the shear modulus and the 
Poisson’s ratio, and g the viscoelastic structural damping coeffi-
cient.

The von Kármán nonlinear strain–displacement relation is em-
ployed herein [31,32]

ε = ε0 + zκ, (4)

where ε0 and κ are the strain vector and variation of curvature 
vector in middle surface and can be expressed as

ε0 =
[
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∂x2
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,−2
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∂x∂ y

]T

, (6)

where u0 and v0 are the mid-plane displacements in the x and y
directions, and w is the transverse displacement in the z direction.

For the DLNP system, the two plate layers bonded by van der 
Walls (vdW) force is usually modeled as the Winkler type founda-
tion [33,34]. Then the distributed forces on the upper and lower 
plates, q′

1 and q′
2 are

q′
1 = −c(w1 − w2), (7a)

q′
2 = −c(w2 − w1), (7b)

where c is the vdW interaction coefficient, and w1 and w2 are the 
transverse displacements of the upper and lower plates.

Performing the Hamilton’s principle and introducing the stress 
function F1 and F2 [35], the nonlinear equations of motion for the 
DLNP can be obtained as
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where D = Eh3/12(1 − υ2) is the bending stiffness of the nano-
plates, m0 = ∫ h/2

−h/2 ρ dz and m2 = ∫ h/2
−h/2 ρz2 dz, in which ρ denotes 

the density of the material. The equations can be readily degener-
ated to the classical cases by setting μ = 0. The exhaustive deriva-
tion process can be referred to [27].

The boundary conditions for the remainder of the paper are 
related to the transverse displacement and the stress function. 
Specifically, four different boundary conditions are considered as 
follows.

I: Simply supported with movable edges
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