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In this paper, we derive the Green tensor of anisotropic gradient elasticity with separable weak non-
locality, a special version of Mindlin’s form II anisotropic gradient elasticity theory with up to six 
independent length scale parameters. The framework models materials where anisotropy is twofold, 
namely the bulk material anisotropy and a weak non-local anisotropy relevant at the nano-scale. In 
contrast with classical anisotropic elasticity, it is found that both the Green tensor and its gradient are 
non-singular at the origin, and that they rapidly converge to their classical counterparts away from the 
origin. Therefore, the Green tensor of Mindlin’s anisotropic gradient elasticity with separable weak non-
locality can be used as a physically-based regularization of the classical Green tensor for materials with 
strong anisotropy.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Mindlin’s theory of strain gradient elasticity [1–3] is a well-
suited framework to model the behavior of elastic materials at the 
nano-scale. In fact, using ab initio calculations, Shodja et al. [4]
found that the characteristic length scale parameters of Mindlin’s 
gradient elasticity theory are in the order of ∼10−10 m for sev-
eral fcc and bcc materials. Therefore, as a generalization of classical 
elasticity, gradient elasticity becomes relevant for nano-mechanical 
phenomena at such length scales. However, the most general ver-
sion of Mindlin’s strain gradient elasticity has found limited appli-
cation because of both its complexity and the presence of a large 
number of new material parameters.

A simplified version of Mindlin’s gradient elasticity with only 
one gradient parameter, known as gradient elasticity of Helmholtz 
type, has successfully been used to model non-singular straight 
dislocations [5] and dislocation loops [6–8] in isotropic materi-
als. Po et al. [9] have further developed the aspects of the the-
ory relevant to its numerical application to Dislocation Dynamics 
simulations. In a recent paper [10], the isotropic theory of gradi-
ent elasticity of Helmholtz type was generalized towards gradient 
anisotropic elasticity of Helmholtz type. In particular, Lazar and Po 
[10] have derived the Green tensor of gradient anisotropic elas-
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ticity of Helmholtz type. The Green tensor and its gradient were 
found to be non-singular at the origin, in contrast with their clas-
sical counterparts (e.g., [11–18]). In addition, it was shown that 
the Green tensor and its gradient rapidly converge to their classical 
limits a few characteristic lengths away from the origin. Therefore, 
the Green tensor of gradient anisotropic elasticity of Helmholtz 
type can be used as a physically-based regularization of the classi-
cal anisotropic Green tensor for applications in problems of nano-
mechanics of materials and their defects (e.g., [19]). Having only 
one characteristic length scale parameter, gradient anisotropic elas-
ticity of Helmholtz type models materials which are anisotropic in 
the elastic material moduli, but possess an isotropic weak non-
locality. As discussed later in this paper, cubic materials belong to 
this category.

For materials with a more general degree of anisotropy, how-
ever, there is no particular reason to assume that the weak non-
locality possesses an isotropic character. Therefore, modeling of 
such materials in the framework of Mindlin’s form II gradient elas-
ticity requires a generalization of gradient anisotropic elasticity of 
Helmholtz type. In this paper, we introduce a framework which 
we call Mindlin’s anisotropic gradient elasticity with separable 
weak non-locality. Such a theory is a special version of Mindlin’s 
anisotropic gradient elasticity where the sixth-rank tensor of strain 
gradient coefficients is decomposed into the product of the fourth-
rank tensor of elastic coefficients and a second-rank tensor of 
characteristic length scale parameters. Thus, this framework is a 
generalization of gradient anisotropic Helmholtz elasticity because 

http://dx.doi.org/10.1016/j.physleta.2015.03.027
0375-9601/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physleta.2015.03.027
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:lazar@fkp.tu-darmstadt.de
mailto:gpo@ucla.edu
http://dx.doi.org/10.1016/j.physleta.2015.03.027
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2015.03.027&domain=pdf


M. Lazar, G. Po / Physics Letters A 379 (2015) 1538–1543 1539

its governing equation involves an anisotropic Helmholtz operator 
with up to six independent length scale parameters. The presence 
of multiple length scales gives rise to a weak non-locality with 
anisotropic character. Therefore, in Mindlin’s anisotropic gradient 
elasticity with separable weak non-locality, anisotropy has two dis-
tinct sources, namely the bulk anisotropy and the weak non-local 
anisotropy.

The fundamental result of this paper consists in the determi-
nation of the Green tensor (fundamental solution) of Mindlin’s 
anisotropic gradient elasticity with separable weak non-locality. 
The Green tensor is non-singular at the origin, and it rapidly 
converges to the Green tensor of classical anisotropic elasticity 
away from the origin. Therefore, the non-singular Green tensor can 
be used as physically-based regularization of the classical Green 
tensor in problems of nano-mechanics of materials with strong 
anisotropy.

This paper is organized as follows. In Section 2, we derive the 
theory of Mindlin’s anisotropic gradient elasticity with separable 
weak non-locality from the general Mindlin’s form II anisotropic 
gradient elasticity theory. In Section 3, we construct the Green ten-
sor of the twofold anisotropic Helmholtz–Navier operator appear-
ing in the partial differential equation representing the equilibrium 
condition of the theory. Using the Fourier transform method, the 
non-singular anisotropic Green tensor is obtained as a surface in-
tegral on the unit sphere. In addition, we derive expressions for 
the gradient of the Green tensor. Discussion and conclusions are 
presented in section conclusions. In Appendix A, we give the form 
of the second-rank tensor of characteristic length scale parame-
ters in relationship to different classes of material symmetries. 
In Appendix B, we derive the Green function of the anisotropic 
Helmholtz operator which constitutes part of the theory and may 
be used for its future applications in the nano-mechanics of mate-
rials and their defects.

2. Mindlin’s anisotropic gradient elasticity with separable weak 
non-locality

Consider an infinite elastic body in three-dimensional space and 
assume that the gradient of the displacement field u is additively 
decomposed into an elastic distortion tensor β and an inelastic1

distortion tensor β∗:

∂ jui = βi j + β∗
i j . (1)

The elastic strain tensor, ei j , is the symmetric part of βi j :

eij = 1

2

(
βi j + β ji

)
. (2)

In Mindlin’s form II of anisotropic gradient elasticity theory 
[1–3], the strain energy density for a homogeneous and centrosym-
metric2 material is given by (see also [20])

W = 1

2
Cijklei jekl + 1

2
Dijmkln∂meij∂nekl , (3)

where Cijkl is the standard fourth-rank tensor of elastic constants 
for an anisotropic material with symmetry properties

Cijkl = C jikl = Cijlk = Ckli j , (4)

possessing 21 independent components for general anisotropy (tri-
clinic), while Dijmkln is a sixth-rank constitutive tensor which ac-

1 The inelastic distortion comprises plastic and thermal effects, and is typically 
an incompatible field. When the inelastic distortion is absent the elastic distortion 
is compatible.

2 Due to the centrosymmetry, there is no coupling between ei j and ∂mekl .

counts for anisotropic weak non-locality and possesses the follow-
ing symmetries

Dijmkln = D jimkln = Dijmlkn = Dklni jm . (5)

In the fully anisotropic (triclinic) version of Mindlin’s strain gra-
dient elasticity theory, the number of independent components of 
the tensor Dijmkln is equal to 171 (see [21]). We shall now assume 
(see also [10,20,22]) that the sixth-rank tensor Dijmkln can be de-
composed into the product of the fourth-rank tensor Cijkl and a 
second-rank tensor �mn of gradient length scale parameters with 
units of squared length, that is

Dijmkln = Cijkl�mn . (6)

As a consequence of the symmetry properties (5) and of the pos-
itive definiteness of W , the tensor �mn must be symmetric and 
positive definite:

�mn = �nm (7)

xm�mnxn > 0 ∀ x, ‖x‖ > 0 . (8)

By virtue of the decomposition (6), the 192 (21 + 171) indepen-
dent material constants of a centrosymmetric triclinic material 
in Mindlin’s anisotropic gradient elasticity theory are reduced to 
21 elastic constants and 6 length scale parameters in Mindlin’s 
anisotropic gradient elasticity with separable weak non-locality. 
For materials with a lower degree of anisotropy, both the tensor 
Cijkl and the tensor �mn must fulfill restrictions resulting from 
point symmetries of the specific material. These restrictions are 
considered in Appendix A for triclinic, monoclinic, orthorhombic, 
tetragonal, hexagonal, trigonal, cubic, and isotropic materials.

From a physical viewpoint, the decomposition (6) represents 
the separation of the two sources of anisotropy present in Mindlin’s 
anisotropic gradient elasticity, namely the elastic bulk anisotropy 
and the anisotropy of the gradient length scale parameters (weak 
non-local anisotropy). The latter, which is not present in clas-
sical anisotropic elasticity, reflects the discrete nature of matter 
and becomes relevant in the presence of structures and defects 
of comparable sizes. Therefore, the anisotropy of the length scale 
parameters gives rise to new physical anisotropic effects3 at the 
nano-scale.

Under the above assumptions, the strain energy density (3) of 
the anisotropic body reads

W = 1

2
Cijklei jekl + 1

2
�mnCijklei j,mekl,n . (9)

The quantities conjugate to the elastic strain tensor and its gradi-
ent are the Cauchy stress tensor σ and the double stress tensor τ , 
respectively. These are defined as:

σi j = ∂W
∂eij

= Cijklekl , (10)

τi jk = ∂W
∂(∂kei j)

= �kl Ci jmnemn,l = �klσi j,l . (11)

In the presence of a body forces density b, the static Lagrangian 
density of the system becomes:

L = −W − V

= −
(

1

2
Cijklβi jβkl + 1

2
�mnCijklβi j,mβkl,n

)
+ uibi , (12)

3 The concept of non-local anisotropy is also present in Eringen’s theory of non-
local anisotropic elasticity [23] (see also [24]). Lazar and Agiasofitou [24] show how 
anisotropic non-locality can be modeled by means of an anisotropic Helmholtz op-
erator.
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