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defects. The induced metric is found. The dispersion relation is obtained for the propagation of rotational 
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1. Introduction

Ideal crystals are absent in nature, and most of their physical 
properties, such as plasticity, melting, growth, etc., are defined by 
defects of the crystalline structure. Therefore, a study of defects is 
a topical scientific question of importance for applications in the 
first place. At present, a fundamental theory of defects is absent in 
spite of the existence of dozens of monographs and thousands of 
articles.

One of the most promising approaches to the theory of defects 
is based on Riemann–Cartan geometry, which involves nontrivial 
metric and torsion. In this approach, a crystal is considered as a 
continuous elastic medium with a spin structure. If the displace-
ment vector field is a smooth function, then there are only elastic 
stresses corresponding to diffeomorphisms of the Euclidean space. 
If the displacement vector field has discontinuities, then we are 
saying that there are defects in the elastic structure. Defects in 
the elastic structure are called dislocations and lead to the ap-
pearance of nontrivial geometry. Precisely, they correspond to a 
nonzero torsion tensor, equal to the surface density of the Burgers 
vector. Defects in the spin structure are called disclinations. They 
correspond to nonzero curvature tensor, curvature tensor being the 
surface density of the Frank vector.

The idea to relate torsion to dislocations appeared in the 1950s 
[1–4]. This approach is still being successfully developed (note re-
views [5–11]), and is often called the gauge theory of dislocations.

Some time ago we proposed the geometrical theory of de-
fects [12–14]. Our approach is essentially different from others 
in two respects. Firstly, we do not have the displacement and 
rotational angle vector fields as independent variables because, 
in general, they are not continuous. Instead, the triad field and 
SO(3)-connection are considered as independent variables. If de-
fects are absent, then the triad and SO(3)-connection reduce to 

E-mail address: katanaev@mi.ras.ru.

partial derivatives of the displacement and rotational angle vector 
fields. In this case the latter can be reconstructed. Secondly, the set 
of equilibrium equations is different. We proposed purely geomet-
ric set which coincides with that of Euclidean three dimensional 
gravity with torsion. The nonlinear elasticity equations and prin-
cipal chiral SO(3) model for the spin structure enter the model 
through the elastic and Lorentz gauge conditions [14–16] which 
allow to reconstruct the displacement and rotational angle vector 
fields in the absence of dislocations in full agreement with classi-
cal models.

The advantage of the geometric theory of defects is that it al-
lows one to describe single defects as well as their continuous 
distributions.

In the present paper, we consider propagation of rotational 
elastic waves in double wall tube with cylindrical dislocation. This 
defect was first described in [17]. The Schrödinger equation for the 
double wall tube was solved in [18] and applied to double wall 
nanotubes. A similar problem was also solved for the cylindrical 
waveguide with wedge dislocation [19].

1.1. Double wall tube

Let us describe double wall tube with cylindrical dislocation in 
the framework of the geometric theory of defects.

We consider cylindrical coordinates {xμ} = {r, ϕ, z}, μ = 1, 2, 3
in tree dimensional Euclidean space R3. Let there be two thick 
tubes r0 ≤ r ≤ r1 and r2 ≤ r ≤ r3 of elastic media, each axis co-
inciding with the z axis. We suppose that r0 < r1 < r2 < r3 (see 
Fig. 1(a), where a section z = const is shown). Now we make 
one tube with the inside cylindrical dislocation in the following 
manner. We stretch symmetrically the inner tube and compress 
the outer one. Then glue together the external surface of the in-
ner tube with the internal surface of the outer tube. Afterwards 
the media comes to some equilibrium state. Due to rotational and 
translational symmetry we obtain one tube rin ≤ r ≤ rex with the 
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Fig. 1. Section z = const of double wall tube before (a) and after (b) defect creation.

axis which coincides with the z axis (see Fig. 1(b)). Radii of cylin-
ders constituting tube surfaces are mapped as follows

r0 �→ rin, r1, r2 �→ r∗, r3 �→ rex.

The gluing is performed along the cylinder r∗ , and there is cylin-
drical defect (dislocation) because part of the media between tubes 
is removed.

The obtained double wall tube with cylindrical dislocation is 
rotationally and translationally symmetric.

The constructed model of the tube with cylindrical dislocation 
can be considered as continuous model of double wall nanotube 
(for a general review, see [20–22]). Consider double wall nanotube 
having two atomic layers. Suppose the inner layer has 18 and outer 
layer has 20 atoms which are shown in Fig. 1(b) by points. Natural 
length measure here is the interatomic distance. Then the length of 
a circle has a jump when one goes from inner to outer layer. In the 
geometric theory of defects, it means that the metric component 
gϕϕ is not continuous in cylindrical coordinates. The corresponding 
model will be described below.

To find radii rin, r∗ , and rex we have to solve the classical elas-
ticity problem.

Let us define the displacement vector field by ui(x), i = 1, 2, 3,

yi �→ xi = yi + ui(x), (1)

where yi and xi are coordinates of a point before and after defor-
mation respectively. We consider the displacement field as a vector 
function on points of media after deformation and gluing. This is 
more adequate because the resulting media after gluing is a con-
nected manifold (before the gluing procedure, each tube represents 
a connected component). In equilibrium state, the vector displace-
ment field satisfies the equation

(1 − 2σ)�ui + ∂i∂ ju
j = 0, (2)

where σ is the Poisson ratio and � is the Laplacian. For conve-
nience, we consider components of the displacement vector field 
with respect to the orthonormal basis

u = ur̂er̂ + uϕ̂eϕ̂ + uẑeẑ,

where

er̂ = ∂r, eϕ̂ = 1

r
∂ϕ, eẑ = ∂z.

We denote indices with respect to the orthonormal basis by hat:

{i} = {r̂, ϕ̂, ẑ}, {μ} = {r,ϕ, z}.
The Latin indices referred to an orthonormal basis are raised and 
lowered by Kronecker symbol: ui := u jδ ji .

The divergence and Laplacian have the following form in cylin-
drical coordinates

∇iu
i = 1

r
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r
∂ϕuϕ̂ + ∂zuẑ,

�ur̂ = 1

r
∂r(r∂rur̂) + 1
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zzur̂ − 1

r2
ur̂ − 2

r2
∂ϕuϕ̂ ,

�uϕ̂ = 1

r
∂r(r∂ruϕ̂ ) + 1

r2
∂2
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r2
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�uẑ = 1

r
∂r(r∂ruẑ) + 1

r2
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zzuẑ. (3)

From the symmetry of the problem, we deduce that only radial 
component of the displacement field differs from zero, and it does 
not depend on the angle ϕ and z coordinates:

{ui} = {ur̂ := u(r), uϕ̂ = 0, uẑ = 0}.
Eq. (2) for zero uϕ̂ and uẑ components is automatically satisfied. It 
is easy to check that the radial derivative of the divergence,

∂r̂∂ ju
j = ∂r

(
1

r
∂r(ru)

)
= ∂2

rru + 1

r
∂ru − 1

r2
u,

coincides with the Laplacian

�ur̂ = 1

r
∂r(r∂ru) − 1

r2
u = ∂2

rru + 1

r
∂ru − 1

r2
u.

Therefore the radial component of Eq. (2) takes the form

∂r

(
1

r
∂r(ru)

)
= 0. (4)

A general solution of this equation depends on two integration 
constants:

u = c1r + c2

r
, c1,2 = const.

Note that the equilibrium equation (4) does not depend on the 
Poisson ratio σ . This means that the cylindrical dislocation is the 
geometrical defect.

Boundary conditions have to be imposed to fix the integration 
constants. Let us introduce a notation for inner and outer tubes:

u =
{ uin, rin ≤ r ≤ r∗,

uex, r∗ ≤ r ≤ rex.

Now boundary conditions are to be imposed. We assume that the 
surface of two wall nanotube is free, i.e. the deformation tensor is 
zero on the boundary:

duin

dr

∣∣∣∣
r=rin

= 0,
duex

dr

∣∣∣∣
r=rex

= 0. (5)
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