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We address the issue of spacetime structure determined empirically from the premetric formulation 
of electromagnetism and explore the role of skewons in the construction of spacetime metric. Type II 
skewon part is not constrained in the first order. In the second order it induces birefringence and is 
constrained to ∼10−19. However, an additional nonmetric induced second-order contribution to the core-
metric principal part makes it nonbirefringent. This second-order contribution is just the extra piece to 
the core-metric principal constitutive tensor induced by the antisymmetric part of the asymmetric metric 
which is nonbirefringent. The antisymmetric metric induced constitutive tensor has a pseudoscalar part. 
The variation of this part is constrained by observation on cosmic polarization rotation to <0.03, and 
gives one constraint on the 6-degree-of-freedom antisymmetric metric.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction – premetric formulation of electrodynamics

In the historical development, special relativity arose from the 
invariance of Maxwell equations under Lorentz transformation. In 
1908, Minkowski [1] further put it into 4-dimensional geometric 
form with a metric invariant under Lorentz transformation. The 
use of metric as dynamical gravitational potential [2] and the em-
ployment of Einstein Equivalence Principle for coupling gravity to 
matter [3] are two important cornerstones to build general relativ-
ity [2,4]. In putting Maxwell equations into a form compatible with 
general relativity, Einstein in 1916 noticed that the equations can 
be formulated in a form independent of the metric gravitational 
potential [5,6]. Weyl [7], Murnaghan [8], Kottler [9] and Cartan [10]
further developed and clarified this resourceful approach.

Maxwell equations for macroscopic/spacetime electrodynamics 
in terms of independently measurable field strength Fkl (E, B) and 
excitation (density with weight +1) Hij (D, H ) do not need metric 
as primitive concept (see, e.g., Hehl and Obukhov [11]):

Hij
, j = −4π J i, (1a)

eijkl F jk,l = 0, (1b)

with J k the charge 4-current density and ei jkl the completely an-
tisymmetric tensor density of weight +1 (e0123 = 1). We use units 
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with the nominal light velocity c equal to 1. To complete this set of 
equations, a constitutive relation is needed between the excitation 
and the field:

Hij = χ i jkl Fkl. (2)

Both Hij and Fkl are antisymmetric, hence χ i jkl must be antisym-
metric in i and j, and in k and l. Hence the constitutive tensor 
density χ i jkl (with weight +1) has 36 independent components, 
and can be uniquely decomposed into principal part (P), skewon 
part (Sk) and axion part (Ax) as given in [11,12]:

χ i jkl = (P)χ i jkl + (Sk)χ i jkl + (Ax)χ i jkl

(
χ i jkl = −χ jikl = −χ i jlk) (3)

with

(P)χ i jkl = (1/6)
[
2
(
χ i jkl + χkli j)

− (
χ iklj + χ l jik) − (

χ il jk + χ jkil)], (4a)
(Ax)χ i jkl = χ [i jkl] = ϕeijkl, (4b)
(Sk)χ i jkl = (1/2)

(
χ i jkl − χkli j). (4c)

The principal part has 20 degrees of freedom. The axion part has 
one degree of freedom. The Hehl–Obukhov–Rubilar skewon part 
(4c) can be represented as

(Sk)χ i jkl = eijmk Sm
l − eijml Sm

k, (5)
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with Sm
n a traceless tensor of 15 independent degrees of free-

dom [11].
There are two equivalent definitions of constitutive tensor 

which are useful in various discussions (see, e.g., Hehl and 
Obukhov [11]). The first one is to take a dual on the first 2 in-
dices of χ i jkl:

κi j
kl ≡ (1/2)e ijmnχ

mnkl, (6)

where e i jmn is the completely antisymmetric tensor density of 
weight −1 with e 0123 = 1. Since ei jmn is a tensor density of weight 
−1 and χmnkl a tensor density of weight +1, κi j

kl is a (twisted) 
tensor. From (6), we have

χmnkl = (1/2)eijmnκi j
kl. (7)

With this definition of constitutive tensor κi j
kl , the constitutive re-

lation (2) becomes

∗Hij = κi j
kl Fkl, (8)

where ∗ Hij is the dual of Hij , i.e.

∗Hij ≡ (1/2)e ijmn Hmn. (9)

The second equivalent definition of the constitutive tensor is to 
use a 6 × 6 matrix representation κI

J . Since κi j
kl is nonzero only 

when the antisymmetric pairs of indices (i j) and (kl) have values 
(01), (02), (03), (23), (31), (12), the index pairs can be enumer-
ated by capital letters I, J , . . . from 1 to 6 to obtain κI

J (≡ κi j
kl). 

With the relabeling, Fij → F I , Hij → H I , e i jmn → eI J , ei jmn → eI J . 
We have F I = (E, −B) and (∗ H)I = (−H , −D). e I J and eI J can be 
expressed in matrix form as

e I J = eI J =
(

0 I3
I3 0

)
, (10)

where I3 is the 3 × 3 unit matrix. In terms of this definition, the 
constitutive relation (8) becomes

∗H I = 2κI
J F J , (11)

where ∗ H I ≡ ∗ Hij = eI J H J . The axion part (Ax)χ i jkl (= ϕei jkl) now 
corresponds to

(Ax)κI
J = ϕ

(
I3 0
0 I3

)
= ϕI6, (12)

where I6 is the 6 × 6 unit matrix. The principal part and the axion 
part of the constitutive tensor all satisfy the following equation 
(the skewonless condition):

eK J κ J
I = eI J κ J

K . (13)

In Section 2, we discuss and study the empirical construction 
of spacetime structure from premetric electrodynamics in the ske-
wonless case. In Section 3, we discuss the empirical foundation 
of the closure relation. In Section 4, we study the constraints on 
Type II skewon field to second order. Although the constitutive 
tensor with the metric principal part and Type II skewon part is 
birefringent in the second order, an added 2nd order nonmetric 
piece to the metric principal part would make the constitutive 
tensor nonbirefringent. This added part turns out to be just the 
extra piece in the principal part of an asymmetric-metric induced 
constitutive tensor. In Section 5, we turn to the study of disper-
sion relation of an asymmetric-metric induced constitutive tensor. 
In Section 6, we study the experimental/observational constraints 
on the asymmetric-metric induced spacetime constitutive tensor. 
In Section 7, we present an outlook and a few discussions.

2. Construction of spacetime structure from premetric 
electrodynamics in the skewonless case

The first issue here is that how to (with what conditions can 
we) reach a metric or, owing to conformal invariance, how to reach 
a Riemannian light cone (a core metric up to conformal invari-
ance) from the constitutive tensor. This issue has been studied 
rather thoroughly in the skewonless case, i.e. in the case that χ i jkl

is symmetric under the exchange of the index pairs i j and kl (in 
terms of the 6 × 6 matrix representation κI

J , Eq. (13) is satisfied) 
and has 20 principal components and 1 axionic component. In this 
case, the Maxwell equations can be derived from the Lagrangian 
L (= LI

(EM) + LI
(EM-P)) with the electromagnetic field Lagrangian 

LI
(EM) and the field–current interaction Lagrangian LI

(EM-P) given 
by

LI
(EM) = −(

1/(8π)
)

Hij Fi j = −(
1/(8π)

)
χ i jkl F i j Fkl, (14)

LI
(EM-P) = −Ak Jk, (15)

with χ i jkl = −χ jikl a tensor density of the gravitational fields 
or matter fields to be investigated, Fij ≡ A j,i − Ai, j the electro-
magnetic field strength tensor, Ai the electromagnetic 4-potential 
guaranteed by the second Maxwell equation (1b), and comma de-
noting partial derivation. We note that only the part of χ i jkl which 
is symmetric under the interchange of index pairs i j and kl con-
tributes to the Lagrangian, i.e. skewon part does not contribute and 
we assume it is absent in this section. Three conditions have been 
studied for this symmetric constitutive tensor:

(i) The closure condition: Toupin [13], Schönberg [14], and Jad-
czyk [15] have investigated this approach. The closure condition on 
the skewonless constitutive tensor is

κκ = (
κI

J κ J
K ) = (1/6) tr(κκ)I6. (16)

With this closure condition, it has been shown that the constitu-
tive tensor must be metric with a dilatonic degree of freedom ψ , 
i.e.,

χ i jkl = (−h)1/2[(1/2)hikh jl − (1/2)hilhkj]ψ, (17)

where hij is a symmetric metric with inverse hij , h = det(hij), and 
ψ is a scalar (dilaton) degree of freedom.

(ii) The Galileo weak equivalence principle: In the 1970s, we 
used Galileo Equivalence Principle and derived its consequences for 
an electromagnetic system with the particle Lagrangian LI

(P) [16,
17]:

LI
(P) = −

∑
I

mI (dsI )/(dt)δ(x − xI ). (18)

Here mI is the mass of the Ith (charged) particle and sI its 4-line 
element from the metric gij . The result is that the constitutive ten-
sor density χ i jkl and the particle metric must satisfy the following 
relation:

χ i jkl = (−g)1/2[(1/2)gik g jl − (1/2)gil gkj] + ϕeijkl, (19)

where gij is the inverse of the particle metric gij , g = det(gij), 
and ϕ is a pseudoscalar (axion) degree of freedom in the relation. 
Since it is well-known that the axion degree of freedom does not 
affect the propagation of light in the lowest eikonal approximation 
[11,18–24], the particle metric gij (or gij) also generates the light 
cone for electromagnetic wave propagation in this approximation. 
We note in passing that from (19) the Galileo Equivalence Prin-
ciple sets the dilaton field to 1 (constant) and does not allow its 
variation in the χ–g framework.

(iii) The nonbirefringence condition: The third approach used 
empirical observations/experiments to constrain the constitutive 
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