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The ac Stark shift of hyperfine levels of neutral atoms can be calculated using the third order perturbation 
theory (TOPT), where the third order corrections are quadratic in the atom–photon interaction and linear 
in the hyperfine interaction. In this paper, we use Green’s function to derive the E[2+ε] method which 
can give close values to those of TOPT for the differential light shift between two hyperfine levels. It 
comes with a simple form and easy incorporation of theoretical and experimental atomic structure data. 
Furthermore, we analyze the order of approximation and give the condition under which E[2+ε] method 
is valid.
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1. Introduction

The recent developments in precision measurement [1,2] and 
optical communication [3] require a possible way to calculate the 
ac Stark shift with considerable precision. In many cases, the sec-
ond order perturbation theory (SOPT) [4], which is capable of uti-
lizing the existing theoretical and experimental atomic structure 
data, is used to compute the light shifts. For instance, in today’s 
researches on atomic clocks, it has been realized that the accuracy 
and stability can be substantially improved by trapping cold atoms 
in a standing wave of light (optical lattice) [5,6]. Because of the 
minimization of Doppler and recoil effects, light shift caused by 
trapping laser is essential. Therefore the wavelength of the trap-
ping laser should be tuned to a region where the light shifts of the 
two clock transition states cancel each other out. This wavelength 
is called “magic wavelength” [7]. In optical clocks and terahertz 
clocks, the clock transition is between the fine structure of atomic 
ground state and excited states, and we can utilize the SOPT to 
compute the light shift of the clock transition. The shift arises 
in the second order of perturbation theory which is quadratic in 
the electric field strength. The calculations suggest the existence 
of magic wavelength both for optical-clock transitions [8,9] and 
terahertz-clock transitions [10].
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Recently, the alkali-metal atom like rubidium (Rb) and ce-
sium (Cs) are considered as potential choices for microwave lat-
tice clocks, using the two field insensitive hyperfine levels of the 
ground state as clock transition levels [11]. However, because SOPT 
doesn’t take into account the hyperfine interaction, the results are 
identical for the hyperfine doublet of the ground state at arbi-
trary values of trapping laser wavelength. To solve this problem, 
the third order perturbation theory (TOPT) [16–18] was proposed 
by extending the formalism to the higher order of perturbation 
theory, and the third order corrections are quadratic in the field 
amplitude and linear in the hyperfine interaction. The theory re-
quires using ab initio approach to construct the atomic structure 
database. Here we introduce the E [2+ε] method which takes the 
hyperfine interactions into consideration in SOPT. We will show 
that for a wide range of trapping laser wavelength, E [2+ε] method 
gives close results to those of TOPT and experiments. In addition, 
E [2+ε] method comes with a simple form, easy incorporation of 
theoretical and experimental atomic structure data, and therefore 
is more applicable for other elements.

The remainder of this manuscript is organized as follows. We 
use Green’s function and diagrammatic representation to derive 
the E [2+ε] method in Section 2. In addition, we provide another 
derivation process in the form of formulas in Appendix A. In Sec-
tion 3, the differential light shifts between two field insensitive 
hyperfine levels of the ground state of Cs and Rb are calculated us-
ing both methods, due to their potential application in microwave 
lattice clocks. In the calculation, besides utilizing the existing ex-
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Fig. 1. (Color online.) Diagrammatic representation of σ ∗
i,hfs(z). |i′〉 and |i′′〉 denote 

different eigenstates of Hfs which have the same parity with |i〉 but with different 
J or principle quantum numbers. Every solid line (black) marked by |i〉 represents 
a factor g0

i (z) = 1/(z − 〈i|Hfs|i〉). Every dashed line (blue) marked by |i〉 and |i′〉
denotes a factor 〈i|Hhfs|i′〉. A summation is performed over the index i′, i′′ . . . in the 
end, where i′, i′′ �= i.

perimental atomic structure data, we use GraspVU code [12] to 
construct our own database of atomic structure, which is summa-
rized in Appendix A. The discussions and conclusions are given in 
Section 4.

2. E [2+ε] method

2.1. Hyperfine structure

We start with no light fields. The Hamiltonian h of the system 
can be written as the sum of the unperturbed part h0 and the 
perturbation �h.

h = h0 + �h,

h0 = Hfs,

�h = Hhfs. (1)

Here h0 is the fine structure Hamiltonian H fs, and the perturbation 
�h is the hyperfine interaction Hamiltonian Hhfs. In the coupled 
representation, the eigenstate of H fs can be written as

|nI J F M F 〉 =
∑

M J ,MI

〈 J M J I MI |F M F 〉 × |n J M J 〉|I MI 〉, (2)

where n is the principle quantum number, I is the nuclear spin, 
J is the electronic total angular momentum and F = I + J is the 
total angular momentum; MI , M J and M F are the projections of I , 
J and F on the quantization axis, respectively. 〈 J M J I MI |F M F 〉 is 
the Clebsh–Gordan coefficient. However, Eq. (2) is not an eigenstate 
of h, because the hyperfine interactions have non-zero off-diagonal 
matrix elements. In the following, we use a shorthand notation 
|i〉 ≡ |ni I J i F i M F i〉 for convenience.

The resolvent of h with complex variable z is

gni,i(z) = 〈i| 1

z − h
|i〉 = 1

z − E i,fs − σ ∗
i,hfs(z)

, (3)

where σ ∗
i,hfs(z) is the expectation value of the level-shift opera-

tor in the state |i〉, which can be diagrammatically represented by 
the Brillouin–Wigner perturbation series in Fig. 1. Because the hy-
perfine state energy Ei = E i,fs + E i,hfs is one pole of the Green’s 
function, where E i,fs and E i,hfs are the fine structure energy and 
the hyperfine corrections, respectively, we have:

E i,hfs = σ ∗
i,hfs(E i,fs + E i,hfs) = σ ∗

i,hfs(Ei). (4)

2.2. The ac Stark shift

Now we consider a neutral atom in a far-off-resonance laser 
field with frequency ν = ω/2π . The laser field is assumed to be in 
a Fock state |R〉 = |N〉 (N � 1), where N equals the mean photon 
number. The Hamiltonian H of the system can be written as the 
sum of the unperturbed part H0 and the perturbation �H :

Fig. 2. (Color online.) Diagrammatic representation of �(0)

iN (z). |i′〉 and |i′′〉 denote 
different eigenstates of Hfs which have the same parity with |i〉 but with different 
J or principle quantum numbers. Every solid line (black) marked by |iN〉 represents 
a factor G0

iN(z) = 1/(z − 〈iN|H0|iN〉), and every dashed line (blue) marked by |iN〉
and |i′N〉 denote a factor 〈iN|Hhfs|i′N〉 = 〈i|Hhfs|i′〉. A summation is performed over 
the index i′, i′′ . . . in the end, where i′, i′′ �= i.

H = H0 + �H,

H0 = H R + Hfs,

�H = Hhfs + He. (5)

Here H0 consists of the radiation field Hamiltonian H R and the 
fine structure Hamiltonian H fs. The state |iN〉 ≡ |i〉 ⊗ |N〉 is an 
eigenstate of H0 with eigenvalue E i,fs + Nh̄ω.

The perturbation �H of Eq. (5) takes into account the hyperfine 
interaction Hhfs and atom–photon interaction He . For He , we use 
the dipole approximation He = −d · 
ε, where d is the electric dipole 
moment and 
ε is the electric field vector. Here for the sake of 
simplicity, we have ignored the atom’s external degree of freedom.

The resolvent of H with complex variable z has a similar form 
to Eq. (3):

G iN(z) = 〈iN| 1

z − H
|iN〉 = 1

z − E i,fs − Nh̄ω − �∗
iN(z)

, (6)

with the expectation value of the level-shift operator in the 
state |iN〉
�∗

iN(z) ≈ �
(0)

iN (z) + �
(2)

iN (z), (7)

where �(0)

iN (z) and �(2)

iN (z) are the parts containing the 0th and 
2nd order of He , respectively. Here we have neglected higher or-
ders of atom–photon interactions, due to the reasons presented in 
the discussion.

The terms in �
(0)

iN (z) and �
(2)

iN (z) can also be represented 
diagrammatically. In Fig. 2, �

(0)

iN (z) has a similar structure to 
that of σ ∗

i,hfs(z) except the solid lines represent G0
iN(z) = 1/(z −

〈iN|H0|iN〉), not g0
i (z) = 1/(z − 〈i|Hfs|i〉). The diagrams of �(2)

iN (z)
are more complicated. It can be decomposed into three kinds of 
factors: C , D and H , which are presented in Fig. 3:

�
(2)

iN (z) =
∑
i′,i′′
j′, j′′

C i′′N
iN · H i′′N

j′′N±1 · D j′′N±1
j′N±1 · H j′N±1

i′N · C i′N
iN (8)

As shown in the diagram, the hyperfine interactions are in-
cluded in the C and D factors, meanwhile the H factor contains 
the atom–photon interactions. The factors C and D are very simi-
lar, except in C i′N

iN , |i〉 cannot be an intermediate state, meanwhile 
in D i′N

iN there is no such restriction. We can calculate the C , D and 
H factors formally:

C i′N
iN = δi,i′ + (1 − δii′)

1 − G0
iN�

(0)

iN

G0
iN

D i′N
iN

D j′N
jN = [δj,j′ + (1 − δ j j′)C j′N

jN ] G0
jN

1 − G0
jN�

(0)

jN

H jN±1
iN = 〈 jN ± 1|He|iN〉 (9)
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