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We propose strongly localized persistent spin current in one-dimensional defect-free quasiperiodic Thue–
Morse rings with Aharonov–Casher effect. The results show that the characteristics of these localized 
persistent currents depend not only on the radius filling factor, but also on the strength of the spin–orbit 
interaction. The maximum persistent spin currents in systems always appear in the ring near the middle 
position of the system array whether or not the Thue–Morse rings array is symmetrical. The magnitude 
of the persistent currents is proportional to the sharpness of the resonance peak, which is dependent on 
the bandwidth of the allowed band in the band structure. The maximum persistent spin currents also 
increase exponentially as the generation order of the system increases.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Over the past few decades, studies of spintronics devices [1–3]
have attracted much attention for their theoretical and potential 
applications in quantum computing or spin filtering. For these de-
vices, the discovery of a strongly localized mode is essential since 
it is related to the full width at half maximum (FWHM), which 
is an important parameter for electronic filters [4,5]. In terms 
of spintronic devices, one electronic structure that features one-
dimensional ring with spin–orbit interaction (SOI), known as an 
Aharonov–Casher (AC) ring, is famous for its intriguing spin in-
terference phenomena, such as a persistent current, which may 
possibly allow it to be applied in the qubit of quantum micro-
circuits [6,7]. The other investigation of research subjects, such as 
spin-related modulation of the charge current [8], spin filters [4,9]
and detectors [10], and so on have also been utilized intensively in 
ring geometries. Although, there have been many studies concern-
ing persistent current on different arrangements of rings [11–17], 
most of these studies are mainly devoted to the observation and 
the magnification of a persistent current. Up to now, there are few 
studies about the characteristics of localized persistent currents.

Since the discovery of quasicrystals [18], many artificial and 
natural quasiperiodic materials have been proposed [19–28]. Both 
of their elementary physical phenomena and technological appli-
cations [21–23] have been attracted considerable attention. The 
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Thue–Morse sequence is the typical quasiperiodic array that is 
used to study electronic characteristics [9,24,25]. For systems with 
quasiperiodic rings, most studies focus on the self-similarity and 
the scaling of the transmission spectra and the fracture energy 
spectra, based on spin-independent transport [26,27]. Little atten-
tion has been paid to the strongly localized modes of the persistent 
spin currents in Thue–Morse AC rings (TMARs). Therefore, it is of 
interest whether localized persistent currents can be produced by 
tuning the SOI strength, the generation order or other parameters 
of the TMARs and, if localized persistent current can be generated 
in TMARs, whether the magnitude and the location of the local-
ized persistent current can be predicted. Such problems have not 
been discussed so far. In this paper, the effect of the SOI in units 
A and B on the occurrence of persistent current and resonances in 
the transmission spectra of the system is determined. We also fur-
ther propose a periodic system for comparison with the results of 
the TMARs.

2. Model and formalism

The system studied in this paper is a one-dimensional quasiperi-
odic array structure that has two units, A and B , arranged in a 
Thue–Morse sequence. According to the iteration rule of Thue–
Morse: A → AB and B → B A, the structure for the lower gener-
ation order of the systems is given by v ≥ 2, with S1 = {A}, S2 =
{AB}, S3 = {ABBA} etc, as shown in Fig. 1(a). The number of rings, 
Nv , in the vth order system is Nv = 2v−1, with N2 = 2 for v = 2. 
For comparison with the results of the TMARs, a periodic system 
that comprises binary periodic AC rings (BPARs) is also proposed, 

http://dx.doi.org/10.1016/j.physleta.2015.02.029
0375-9601/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physleta.2015.02.029
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:hsuehwj@ntu.edu.tw
http://dx.doi.org/10.1016/j.physleta.2015.02.029
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2015.02.029&domain=pdf


1284 R.Z. Qiu et al. / Physics Letters A 379 (2015) 1283–1287

Fig. 1. (Color online.) A schematic diagram of a (a) vth order TMARs and a (b) BPARs 
system. (c) A schematic diagram of an ideal mesoscopic ring connected to two leads.

with n1 = {AB}, n2 = {AB AB}, n3 = {AB AB AB AB} etc., as shown 
in Fig. 1(b). Here, it is assumed that the width of the each ele-
ment of the unit, arm or lead, is much less than the length of the 
one. The quantum energy levels for the transverse confinement 
are much greater than the ones for the longitudinal. Thus, we can 
simplify the problem to be one-dimensional for each element of 
the unit. In the presence of SOI, the Hamiltonian operator for a 
one-dimensional ring shown in Fig. 1(c) can be written as [29]

�

H = − h̄2

2m∗a2

(
∂2

∂ϕ2

)
− i
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− i
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where m∗ is the effective mass of the carrier, a is the radius of 
the ring. The parameter, α, represents the SOI strength, which is 
measured in units of α0 = h̄2/2m∗a = 0.6626 × 10−11 eV m [30]
and is controlled by a gate voltage with typical values in the range 
(0.5–2.0) × 10−11 eV m, for an InGaAs-based mesoscopic ring. We 
can solve the eigenvalue problem in a straightforward manner [31], 
and the energy eigenvalues are Eμ

n = (n − Φ
μ
AC/2π), where μ = ±

and Φμ
AC = −π(1 −μ

√
1 + (α/α0)2) is the so-called AC phase. The 

unnormalized eigenstates have the general form, ψμ
n = einϕχμ(ϕ), 

and the mutually orthogonal spinors, χμ(ϕ), can be expressed in 
terms of the eigenvectors of the Pauli matrix, σz . The electronic 
wavefunction in the upper (u) and lower (d) arms can be written 
as

ψ
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At a fixed energy, the dispersion relation yields the quantum num-
bers nμ

±(E) = ±√
E + Φ

μ
AC/2π . The wave function in the left lead 

and right lead can be expanded as
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χμ(0), (2c)
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where χ+(ϕ) = (cos(θ/2) eiϕ sin(θ/2))T , χ−(ϕ) = (sin(θ/2)

−eiϕ cos(θ/2))T and k = √
2m∗E/h̄ is the Fermi wave vector. By 

applying the continuity of the wave functions and the conserva-
tion of the spin current densities at the junctions of the leads and 
the ring [32], one finds
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From Eqs. (3a)–(3d), the transmission and reflection amplitudes for 
spin polarization, μ = ±, for unit A in the presence of SOI, of 
strength αA can be obtained

tμA = i sin(kaAπ) cos
(
Φ

μ
AC/2

)
/D A, (4a)

rμ
A = [−3 sin2(kaAπ) + 4 sin2(Φμ

AC/2
)]

/4D A, (4b)

where D A = {cos2(Φ
μ
AC/2) − [cos(kaAπ) − i sin(kaAπ)/2]2}. Sim-

ilarly, transmission and reflection amplitudes for unit B can be 
expressed in the same form, by replacing subscript A with B .

For different generation orders of the TMARs, S v , the transmis-
sion and reflection amplitudes are directly calculated, using the 
transfer matrix method [26,27]. The transfer matrix Mv of a sys-
tem with order v is composed by the one with lower order v − 1
and its reverse, given by

Mv = {
Mv−1M R

v−1

}
(v ≥ 2), (5)

where M R
v = {M R

v−1Mv−1}, M1 = M A and M R
1 = MB . The transfer 

matrix for the J -connected TMARs can be expressed by
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[
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∗
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]
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where tμJ and rμ
J are respectively the total transmission and reflec-

tion amplitudes. Therefore, the total transmission probability for 
the J -connected TMARs is obtained by T μ

J = |tμJ |2. In the Landauer 
formalism, the conductance of the whole system array is given by

G = (
e2/h

) ∑
μ=±

∣∣tμJ ∣∣2
. (7)

3. Results and discussion

We start our discussion by considering the persistent currents 
in each ring of the two systems, which are TMARs and BPARs. The 
total spin current flow around a small energy interval is given by 
Iμ = (e/2π h̄)T μ , where T μ is the total transmission coefficient. 
The current flow in the upper arm is expressed by Iμu = |aμ

+|2 −
|aμ

−|2, where aμ
+ and aμ

− are the complex amplitudes of the forward 
and backward wavefunctions. When a net current flows through 
the arm from left (right) to right (left), the current is defined as 
positive (negative). The current in each arm is generally different 
from the others in the identical ring due to symmetry breaking via 
the unequal arm length, the AB effect, and the SOI, which leads 
to persistent currents [13]. According to the conservation of the 
current at the junction, T μ = Iμu − Iμd for each ring, the persistent 
spin current, Iμp , in the ring is defined as [11,13]

Iμp = (T μ − |Iμu | − |Iμd |)
2

. (8)

In this study, we examined the persistent spin currents of each 
ring in dimensionless units Iμp → 2π h̄ Iμp /e.
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