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In this work, Fractional Optimal Control Problem (FOCP) of a Distributed system is investigated in
cylindrical coordinates. Axis-symmetry naturally arises in the problem formulation. The fractional time
derivative is described in the Riemann–Liouville (RL) sense. The performance index of a FOCP is
considered as a function of state and control variables and system dynamics are given as a Partial
Fractional Differential Equation (PFDE). The method of separation of variables is used to find the
solution of the problem. Eigenfunctions are used to eliminate the terms containing space parameters
and to define the problem in terms of a set of generalized state and control variables. For numerical
computations, Grünwald–Letnikov (GL) approach is used. A time-invariant example is considered to
demonstrate the effectiveness of the formulation. The comparison of analytical and numerical solutions
is given using simulation results and also it can be seen that analytical and numerical results converge
each other. In addition, simulation results for different values of order of derivative, time discretizations
and eigenfunctions are analyzed.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In the last years, it has been showed that the accurate mod-
elling of dynamics of many physical systems can be obtained using
Fractional Differential Equations (FDEs). Therefore, there has been
a great deal of interest in the solution methods of FDEs in ana-
lytical and numerical sense. When FDEs describe the performance
index and system dynamics, an optimal control problem reduces to
a FOCP. The Fractional Optimal Control (FOC) of a distributed sys-
tem is a FOC for which system dynamics are defined with PFDEs.
There has been very little work in the area of FOCPs, especially
FOC of a distributed system.

In the area of Fractional Order Controls and Systems, there are
some papers which must be mentioned here. Oustaloup [1] inves-
tigated fractional order controls for dynamic systems and showed
that the CRONE method has better performance than classical P I D
controller. Podlubny [2] demonstrated that P I , P D and P I D con-
trollers are particular cases of the fractional P IλDμ controller.
Podlubny, Dorcak and Kostial [3] compared RL–GL and Caputo frac-
tional derivatives from the viewpoint of formulation and solution
of engineering and physics problems, and they also presented the
fractional P IλDμ controller. Dorcak [4] analyzed dynamic prop-
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erties and numerical methods of simulation of fractional-order
systems. Petras, Dorcak and Kostial [5] dealt with fractional-order
controlled systems and fractional-order controllers in discrete time
domain. Machado [6,7] introduced algorithms for fractional-order
discrete time controllers. Özdemir and İskender [8] applied frac-
tional P Iλ controller for fractional order linear system subject to
input hysteresis. Although, these cited papers show that the re-
search area of fractional-order systems and controllers is popular,
they do not mention FOCPs.

Recently, some papers related to the theories and solution
methods of FOCPs have been presented. A general formulation
and a numerical scheme for FOCPs in RL sense are investigated in
Agrawal [9]. Agrawal [10] presents an eigenfunction expansion ap-
proach for a FOCP for a class of distributed system whose dynamics
are defined in Caputo sense. Özdemir et al. [11] also use eigenfunc-
tion expansion approach to formulate a FOCP of a 2-dimensional
distributed system. A general scheme for stochastic analysis of
FOCPs is proposed in Agrawal [12]. A formulation for FOCPs whose
dynamics are described in terms of Caputo fractional derivative is
researched in Agrawal [13,14] and the same problem is investi-
gated in terms of RL fractional derivatives in Agrawal and Baleanu
[15].

In this Letter, we formulate a FOCP of a 3-dimensional dis-
tributed system defined in cylindrical coordinates. For this reason,
the axis-symmetric case arises naturally in this problem. It is for-
mulated in terms of RL fractional derivative and GL approach is
used for numerical computation. Özdemir et al. [11] consider the
problem in 2-dimensional case (Cartesian coordinates), whereas
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in this Letter we formulate the problem in 3-dimensional case
(cylindrical coordinates). The solution of problem is obtained for
different number of eigenfunctions and time discretization. Also,
the papers related to axis-symmetry can be given as follows: El-
Shahed and Salem [16] find the solution of fractional generalization
of Navier–Stokes equations described by polar coordinates. Frac-
tional radial diffusion in a cylinder and in a sphere are proposed
in Povstenko [17,18], respectively. Özdemir et al. [19], and Özdemir
and Karadeniz [20] have recently formulated an axis-symmetric
fractional diffusion-wave problem.

This Letter is organized as follows. In Section 2, the definitions
of RL fractional derivative and FOCP are given. In Section 3, an axis-
symmetric FOCP defined in cylindrical coordinates is presented. In
Section 4, the GL approach is given and numerical results are an-
alyzed. In Appendix A, the analytical solution of the problem is
presented. Finally, Section 5 shows conclusions of this work.

2. Mathematical tools

Several definitions of a fractional derivative such as Riemann–
Liouville, Caputo, Grünwald–Letnikov, Weyl, Marchaud and Riesz
have been proposed. In this section, we formulate the problem
in terms of the Riemann–Liouville fractional derivatives, which are
defined as:

The left Riemann–Liouville fractional derivative

a Dα
t f (t) = 1

�(n − α)

(
d

dt

)n t∫
a

(t − τ )n−α−1 f (τ )dτ , (1)

and the right Riemann–Liouville fractional derivative

t Dα
b f (t) = 1

�(n − α)

(
− d

dt

)n b∫
t

(τ − t)n−α−1 f (τ )dτ , (2)

where f (.) is a time-dependent function, �(.) is the Euler’s gamma
function, α is the order of derivative such that n − 1 < α < n and
t represents time which belongs to [a,b] (a,b ∈ R). When α is an
integer, these definitions reduce to ordinary differential operators,
i.e.,

a Dα
t f (t) =

(
d

dt

)n

,

t Dα
b f (t) =

(
− d

dt

)n

, α = n, n = 1,2, . . . . (3)

Using the above definitions, the FOCP of interest is defined in
Agrawal [9,15] as follows: Find the optimal control u(t) that mini-
mizes the performance index

J (u) =
1∫

0

F (x, u, t)dt (4)

subject to the system dynamic constraints

0 Dα
t x = G(x, u, t) (5)

and initial condition

x(0) = x0, (6)

where x(t) and u(t) are the state and the control variables, respec-
tively, F and G are two arbitrary functions. For α = 1, this problem
reduces to a standard optimal control problem. Moreover, we take
0 < α < 1 and assume that x(t), u(t) and G(x, u, t) are all scalar
functions for simplicity. In the case of α > 1, additional initial
conditions could be necessary. In the usual sense, the differential
equations which describe the dynamics of the system are written

in the state-space form, in that case, the order of the derivatives
turns out to be less than 1. For this reason, we consider 0 < α < 1
in this work. We further consider the necessary terminal condi-
tions which is determined by using Lagrange multiplier technique
as follows:

0 Dα
t x = G(x, u, t), (7)

t Dα
1 λ = ∂ F

∂x
+ ∂G

∂x
λ, (8)

∂ F

∂u
+ ∂G

∂u
λ = 0, (9)

where λ is the Lagrange multiplier and

x(0) = x0 and λ(1) = 0. (10)

Eqs. (7)–(9) represent the Euler–Lagrange equations for the FOCP
defined by Eqs. (4)–(6). This indicates that the solution of FOCPs
requires not only right derivatives but also left derivatives.

3. The axis-symmetric FOCP formulation

Let us consider the following problem: Find the control u(r, z, t)
that minimizes the performance index

J (u) = 1

2

1∫
0

L∫
0

R∫
0

r
[

Ax2(r, z, t) + Bu2(r, z, t)
]

dr dz dt (11)

subject to the system dynamic constraints

0 Dα
t x(r, z, t) = β

(
∂2x(r, z, t)

∂r2
+ 1

r

∂x(r, z, t)

∂r
+ ∂2x(r, z, t)

∂z2

)

+ u(r, z, t), (12)

initial condition

x(r, z,0) = x0(r, z) (0 < r < R, 0 < z < L) (13)

and the boundary conditions

∂x(0, z, t)

∂r
= ∂x(R, z, t)

∂r
= ∂x(r,0, t)

∂z
= ∂x(r, L, t)

∂z
= 0, (14)

where x(r, z, t) and u(r, z, t) are the state and the control functions
depending on r, z, which represent cylindrical coordinates, and t .
A and B are two arbitrary functions. R is the radius and L is the
length of cylindrical domain on which problem is defined. The up-
per limit for time t is taken as 1 for convenience. This limit can be
any positive number.

We assume that x(r, z, t) and u(r, z, t) can be written as

x(r, z, t) =
m∑

i=1

m∑
j=1

xij(t) J0

(
μ j

r

R

)
sin

(
iπ

L
z

)
, (15)

u(r, z, t) =
m∑

i=1

m∑
j=1

uij(t) J0

(
μ j

r

R

)
sin

(
iπ

L
z

)
, (16)

where J0(μ j
r
R ) sin( iπ

L z), i, j = 1,2, . . . ,m, are the eigenfunctions
which are obtained by using the method of separation of variables.
Here, J0 is zero order Bessel function of first kind and μ j are the
roots of J0. xij(t) and uij(t) are the state and the control eigenco-
ordinates; m is a finite positive integer that theoretically should go
to infinity. However, we take m as a finite number for computa-
tional purposes. By substituting Eqs. (15) and (16) into Eq. (11), we
obtain

J = R2L

8

1∫
0

m∑
i=1

m∑
j=1

J 2
1(μ j)

[
Ax2

i j(t) + Bu2
i j(t)

]
dt. (17)
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