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A linear stability analysis determining the onset of oscillatory convection of an Oldroyd-B fluid in a
bounded two-dimensional rectangular porous medium generated by Newtonian heating is conducted.
Influences of viscoelastic parameters and Biot number on the onset of oscillatory convection, preferred
modes and patterns of disturbed temperature contours are discussed.
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1. Introduction

Study of the stability of thermal convection in a fluid-saturated
porous medium is very important for exploiting the dynamics
of thermal convection and potential applications in many engi-
neering fields, such as geothermal reservoirs, energy conservation,
and cooling of electrical machines. In the past several decades,
linear stability analysis of thermal convection in a Newtonian
fluid-saturated porous medium has been conducted by many re-
searchers based on the Darcy’s law [1–5]. In contrast, publications
on study of thermal convection in a viscoelastic fluid-saturated
porous medium are far less than fruitful though interest in the
flow and heat transfer characteristics for viscoelastic fluids in-
creases rapidly in the past several years [6–9]. This is due to the
lack of suitable models, as Darcy’s law for Newtonian fluids, to de-
scribe the motion of viscoelastic fluids in porous media.

A linear stability analysis of a layer of pure viscoelastic fluid
heated from below was first performed by Sokolov and Tanner
[10] based on a simple constitutive relation for the viscoelas-
tic fluid. They identified two possible instability mechanisms: ex-
change of stabilities and overstability. The former is similar to
that for a Newtonian fluid, but the latter is unique to the vis-
coelastic fluid. Recently, Kim et al. [11] performed linear and non-
linear stability analyses of thermal convection for an Oldroyd-B
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fluid saturated in a horizontal porous layer with isothermal top
and bottom boundaries based on a modified Darcy’s law for de-
scription of the viscoelastic fluid motion in the porous layer. This
model was first proposed by Alishaev and Mitzadajanzade [12],
which is a macroscopic phenomenological model mimicking the
Darcy’s law but incorporating the viscoelastic effect. Subsequently,
this model has been employed by several other researchers for
studying thermal convection of viscoelastic fluids saturated in
porous media [13–16]. Zhang et al. [17] investigated the stabil-
ity of thermal convection in a porous cylinder saturated with
a viscoelastic fluid; two different boundary heating conditions
were considered: constant temperature heating and constant heat
flux heating. They obtained the critical Rayleigh number for on-
set of thermal convection and the corresponding preferred mode
of flow pattern for different combinations of the elastic param-
eters. Nevertheless, the heating conditions in these works are in
the form of isothermal bottom boundary or uniform heat flux
from below. No work has been conducted for the stability of
a viscoelastic fluid in a porous medium subject to Newtonian
heating, which is more commonly met in engineering applica-
tions.

Carslaw and Jaeger [18] were the first to introduce at the bot-
tom wall a variable heat flux boundary condition expressed in
terms of the Biot number, which represents a Robin boundary con-
dition. This boundary condition is then referred to as Newtonian
heating or forced convection heat transfer [19,20]. Kubitschek and
Weidman [21] performed a linear stability analysis of a Newtonian
fluid-saturated porous medium heated from below by Newtonian
heating. They proved that when Bi → 0, the thermal convection
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phenomenon approaches to that subject to uniform heat flux heat-
ing. On the other hand, when Bi → ∞, it coincides with that under
isothermal bottom heating. Therefore, thermal convection subject
to different bottom heating conditions (i.e., Dirichlet, Neumann and
Robin boundary conditions) can be achieved by tuning properly the
value of the Biot number.

In this work, a two-dimensional linear stability analysis of an
Oldroyd-B fluid saturated thin rectangular porous medium is per-
formed under the Newtonian heating boundary condition. The crit-
ical Biot-modified Rayleigh numbers marking the onset of oscilla-
tory convection are obtained numerically. The effects of the elastic
parameters and the Biot number on the onset of oscillatory con-
vection and preferred cellular modes are investigated, as well as
the patterns of disturbed temperature distributions upon onset of
oscillatory convection.

2. Model formulation

A bounded three-dimensional thin porous layer with height H∗
and rectangular dimensions a∗ and b∗ is considered, in which b∗ is
much smaller than H∗ . The four vertical boundaries of the model
are adiabatic and impermeable. The impermeable horizontal top
boundary is isothermal with a constant temperature T ∗

1 , while the
impermeable horizontal bottom boundary is heated by Newtonian
heating with external ambient temperature T ∗∞ and convective
heat transfer coefficient h. This porous medium has a permeability
K and is saturated with an incompressible viscoelastic fluid which
has a constant dynamic viscosity μ, a coefficient of thermal expan-
sion β and a density ρ . The fluid-saturated porous medium has
a thermal diffusivity κ . Here, flow of the Oldroyd-B fluid in the
porous medium is described with the modified Darcy’s law [12].
Therefore, the governing equations of the current problem, under
the Oberbeck–Boussinesq approximation, are given as [11,13,14]

∇∗ · v∗ = 0 (1)(
1 + λ̄

∂

∂t∗

)(−∇∗ p∗ + ρ∗gk̂
) = μ

K

(
1 + ε̄

∂

∂t∗

)
v∗ (2)

∂T ∗

∂t∗ + (
v∗ · ∇∗)T ∗ = κ∇∗2T ∗ (3)

ρ∗ = ρ∗
1

[
1 − β

(
T ∗ − T ∗

1

)]
(4)

where v∗ is the Darcy velocity with v∗ = (u∗, v∗, w∗) in Cartesian
coordinates, p∗ the pressure, g the gravitational acceleration, ε̄ and
λ̄ respectively the strain retardation time and the stress relax-
ation time, k̂ a unit vector along the z-direction which is vertically
upward, and ρ∗

1 the density at temperature T ∗
1 . The boundary con-

ditions are given as

u∗ = 0 at x∗ = 0,a∗ (5a)

v∗ = 0 at y∗ = 0,b∗ (5b)

w∗ = 0 at z∗ = −H∗,0 (5c)

∂T ∗

∂x∗ = 0 at x∗ = 0,a∗ (5d)

∂T ∗

∂ y∗ = 0 at y∗ = 0,b∗ (5e)

T ∗ = T ∗
1 at z∗ = 0 (5f)

h
(
T ∗∞ − T ∗) = −k

∂T ∗

∂z∗ at z∗ = −H (5g)

In Eq. (5g), k is the effective thermal conductivity of the viscoelas-
tic fluid-saturated porous layer.

3. Linear stability analysis

3.1. Linear stability equations

For convenience, a heat flux q can be introduced into the cur-
rent work as [21]

q = Bi

Bi + 1
· k�T ∗

H∗ (6)

Here, �T ∗ = T ∗∞ − T ∗
1 > 0 and Bi is the Biot number defined as

Bi = hH∗

k
(7)

It should be noticed that q is not a constant heat flux in this prob-
lem, but a function of Bi and �T ∗ .

In order to perform the linear stability analysis, Eqs. (1)–(4) are
first non-dimensionalized by scaling lengths with H∗ , time with
H∗ 2/κ , velocities with κ/H∗ , pressure with κμ/K and tempera-
ture with qH∗/k. Then θ and w are introduced to represent re-
spectively the infinitesimal disturbances of the dimensionless tem-
perature and vertical velocity over the pure conduction solution.
As a consequence, Eqs. (1)–(4) can be, after eliminating the pres-
sure term, rewritten as(

1 + ε
∂

∂t

)
∇2 w = Ra

(
1 + λ

∂

∂t

)
∇2

1θ (8)

∂θ

∂t
− w = ∇2θ (9)

where ε and λ are respectively the dimensionless relaxation and
retardation characteristic times. ∇2 = ∂2

∂x2 + ∂2

∂ y2 + ∂2

∂z2 and ∇2
1 =

∂2

∂x2 + ∂2

∂ y2 . Ra in Eq. (8) is the Biot-modified Rayleigh number de-

fined as

Ra = qKρ1βg H∗2

μkκ
= Bi

Bi + 1
· K gβ�T ∗H∗

νκ
= Bi

Bi + 1
· Ra (10)

In Eq. (10), ν is the kinematic viscosity of the viscoelastic fluid, Ra
is the typical Rayleigh number in the case of a porous medium
with constant temperature difference �T ∗ between isothermal
bottom and top boundaries. The corresponding dimensionless
boundary conditions of the disturbances are

w = 0 at z = −1,0 (11a)
∂θ

∂x
= 0 at x = 0,a (11b)

∂θ

∂ y
= 0 at y = 0,b (11c)

θ = 0 at z = 0 (11d)

Bi θ − θz = 0 at z = −1 (11e)

where a = a∗
H∗ and b = b∗

H∗ are dimensionless side lengths. In the
case when b∗ is much smaller than H∗ , i.e., b � 1, the problem
can be simplified into a two-dimensional one.

3.2. The characteristic equation and solution procedure

Under the normal mode analysis, temperature and velocity dis-
turbances are supposed to be horizontally periodic. Taking the
adiabatic vertical boundary conditions into account, the solution
should be of the form:

θ = cos(αx) cos(β y)Θ(z)eσ t , α = mπ

a
, β = nπ

b
(12)

w = ∂θ

∂t
− ∇2θ = (

σ + L2 − D2)θ, L2 = α2 + β2 (13)
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