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Dragana Jović Savić ∗, Aleksandra Piper, Radomir Žikić, Dejan Timotijević
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Vortex solitons at the interface separating two different photonic lattices – square and hexagonal – 
are demonstrated numerically. We consider the conditions for the existence of discrete vortex states 
at such interfaces and develop a concise picture of different scenarios of the vortex solutions behavior. 
Various vortices with different size and topological charges are considered, as well as various lattice 
interfaces. A novel type of discrete vortex surface solitons in a form of five-lobe solution is observed. 
Besides stable three-lobe and six-lobe discrete surface modes propagating for long distances, we observe 
various oscillatory vortex surface solitons, as well as dynamical instabilities of different kinds of solutions 
and study their angular momentum. Dynamical instabilities occur for higher values of the propagation 
constant, or at higher beam powers.

© 2015 Published by Elsevier B.V.

1. Introduction

Optical surface waves are a special type of localized waves ex-
isting at the interface between two media with different optical 
properties. They attract great attention with their possible applica-
tion in surface sensing and probing, and have been the subject of 
intense study in diverse areas of physics [1]. Such surface waves 
were observed to exist in a variety of systems: between metal and 
a linear dielectric medium (plasmon waves) [2] at the boundary of 
semi-infinite periodic multilayer dielectric media [3], in Kerr me-
dia [4], waveguide arrays [5], metamaterials [6], optical amplifiers 
[7], etc.

Special attention has been devoted to the study of nonlinear 
optical surface waves, owing to the fact that the nonlinear re-
sponse of materials makes possible the dynamic control of surface 
localization. The interplay of periodicity and nonlinearity can facil-
itate the formation of different types of surface modes localized at 
and near the surface, and a series of theoretical [8–15] and sub-
sequent experimental [16–19] investigations have demonstrated 
nonlinearity-induced light localization at the interface and the for-
mation of the so-called discrete surface solitons.

There has been a renewed interest in optical beams carry-
ing angular momentum – vortex solitons – in many branches of 
science, including plasmas, Bose–Einstein condensates, superflu-
ids, and nonlinear optics [20–22]. Vortex solitons are self-localized 
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nonlinear waves that possess a phase singularity with a total phase 
accumulation of 2πTC for a closed circuit around the singularity. 
The integer number TC is the vorticity or topological charge of the 
vortex, and its sign defines the direction of the phase circulation. 
Nonlinear periodic systems such as photonic lattices can stabilize 
optical vortices in the form of stable discrete vortex solitons [21]. 
Recently, some examples of surface vortex solitons have been ob-
served, at the boundaries of photonic lattices [23,24], or at the 
interface between two optical lattices with the same geometry but 
with different refractive index [25].

In this paper, we extend this analysis to the case of vortex 
solitons supported by different interfaces separating square and 
hexagonal photonic lattices [26,27]. We study a more general case 
investigating the interface separating two lattices of different sym-
metries, and observe vortex solitons at such interface. In particular, 
we determine the conditions for the existence of discrete vortex 
states at such interface and also study their stability. The existence 
domains of interface vortex solitons as well as the regions of sta-
bility are observed. A new kind of five-lobe discrete vortex soliton 
is observed for the first time, and different topological charges and 
phase structures of such solutions are considered. Also, we focus 
more attention to the study of extensively oscillating interface vor-
tex solitons and their angular momentum transfer, as well as on 
the dynamical instabilities of such solitons.

The paper is organized as follows. In Section 2 we introduce 
the theoretical model which describes the vortex propagation at 
the interface between two different photonic lattices. Section 3
summarizes our numerical results for different kinds of interface 
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Fig. 1. Five-lobe interface vortex solitons. Input vortex beam is shown with the 
layout of the lattices beams indicated by open circles (a). The line depicts the 
interface separating two lattices. (b) Power diagram for the existence of five-lobe 
vortex solitons. The corresponding intensity distributions for interface vortex so-
lutions are presented in (c), (d), (e). Parameters: � = 11, input lattice intensities 
V 0s = V 0h = 2.5, input vortex beam intensity |A0|2 = 1, vortex TC = 1.

surface states. In Section 4 we study oscillations and instabilities 
of such vortex solutions. Finally, Section 5 concludes the paper.

2. Modeling of vortex propagation at the lattice interfaces

The propagation of vortex beams at the interface separat-
ing square and hexagonal photonic lattice, is described using the 
scaled nonlinear Schrödinger equation for the optical electric field 
amplitude A [28]:

i∂z A + (
∂2

∂x2
+ ∂2

∂ y2
)A + �

|A|2 + V

1 + |A|2 + V
A = 0, (1)

where x, y and z are the transverse and longitudinal coordi-
nates normalized to the characteristic beam width and diffraction 
length, � is the dimensionless strength of the nonlinearity, and 
V (x, y) is the transverse lattice potential, given as a square po-
tential V s(x, y) for x < 0, and a hexagonal potential Vh(x, y) for 
x > 0, with the peak intensities V 0s and V 0h , respectively. A vortex 
beams, positioned at the corresponding interface lattice sites, are 
launched into the lattice, perpendicular to the input crystal face 
(see Fig. 1(a), Fig. 2(a) and Fig. 3(a)).

First, we investigate the existence of vortex solitonic solutions. 
The above equation suggests their existence in the form A =
a(x, y)eiμz , where a(x, y) = |a(x, y)| exp[iϕ(x, y)] is a complex-
valued function, ϕ(x, y) is the phase distribution, and μ is the 
propagation constant. After substitution of the solitonic solution 
form in Eq. (1), it transforms into:

−μa + (
∂2

∂x2
+ ∂2

∂ y2
)a + �a

|a|2 + V

1 + |a|2 + V
= 0. (2)

The solitonic solutions can be found from Eq. (2) by using the 
modified Petviashvili’s method [29,30]. This method is a modifi-
cation of the Fourier iteration method proposed in [29], and it is 
based on the separation of linear and nonlinear terms in Eq. (2), 
and construction of the iteration scheme for an observation of dif-
ferent solitons. We determine different classes of vortex surface 
solitons by launching vortex beams whose rings are covering lat-
tice sites near the interface separating two photonic lattices. We 
use input parameters � = 11 and input beam intensity |A0|2 = 1
but vary input lattice intensities V 0s and V 0h . Vortex beams with 
different topological charges (TCs) are used as input. In this pa-
per, we analyze three different classes of interface vortex solitons: 
discrete solitons consisting of three, five and six lobes.

Next, to investigate the stability of such solutions, we use soli-
tonic solutions obtained from Petviashvili’s iteration method as 
input beams in Eq. (1). Then we solve numerically the propagation 
equation (1) employing a numerical approach developed earlier 
[28]. Numerical procedure is based on the fast-Fourier-transform 
split-step beam propagation numerical algorithm. With this proce-
dure we could study the stability of our solitons as well as their 
dynamical behavior and AM transfer in the lattices.

Fig. 2. Interface vortex solitons with six lobes. Input vortex beam is shown with the 
layout of the lattices beams indicated by open circles (a). (b) Power diagram for the 
existence of six-lobe vortex solitons (the region of stable solutions is marked with 
the red line). (c), (d), (e) The characteristic intensity distributions for six-lobe vortex 
solutions. Physical parameters are as in Fig. 1. (For interpretation of the references 
to color in this figure, the reader is referred to the web version of this article.)

Fig. 3. Three-lobe interface vortex solitons. (a) Input vortex beam with the layout of 
the lattices beams indicated by open circles. (b) Corresponding power diagram for 
the existence of three-lobe vortex solitons (the region of stable solutions is marked 
with the red line). (c)–(e) Typical intensity distributions for three-lobe vortex solu-
tions. Physical parameters are as in Fig. 1. (For interpretation of the references to 
color in this figure, the reader is referred to the web version of this article.)

3. Interface discrete vortex solitons

We start investigating the interface with the same lattice inten-
sities (V 0s = V 0h) and search for spatially localized vortex soliton 
solutions. It is well known that the lattice induces confinement of 
the filaments approximately at the location of the incident vortex 
ring and the surrounding lattice sites. First, we choose the input 
ring vortex beam to cover the lattice sites adjacent to the square 
lattice part of the interface (Fig. 1(a)). The corresponding power di-
agram is presented in Fig. 1(b). The beam power for vortex solitons 
is given by the formula: P = ∫ ∞

−∞
∫ ∞
−∞ |a|2dxdy. The characteris-

tic outcomes in the form of five-lobe solution are shown in Fig. 1
(c), (d) and (e). Increasing the propagation constant μ leads to the 
asymmetry of the solitons, with stronger localization of the vortex 
energy in the hexagonal lattice part of the interface (Fig. 1 (d), (e)).

Next, we consider vortex beam positioned at the hexagonal lat-
tice part of the interface; it is chosen input ring vortex beam to 
cover the lattice sites adjacent to the hexagonal lattice part of the 
interface (Fig. 2(a)). The surface vortex states are observed in a 
form of six-lobe discrete vortex solitons. The corresponding power 
diagram for such states is presented in Fig. 2(b). Typical outcomes 
are shown in Fig. 2 (c), (d) and (e). The symmetric interface vortex 
solitons with six lobes can exist for lower values of the propaga-
tion constant μ. But increasing the values of propagation constant, 
one can observe asymmetric solutions with stronger localization of 
the vortex energy in the hexagonal lattice part of the interface.

Fig. 3 presents three-lobe discrete vortex solutions at the in-
terface separating square and hexagonal lattice. The asymmetry of 
the vortex soliton with higher power (c)–(e) is more pronounced 
than that of the vortex with lower power. It is interesting to note 
that three-lobe asymmetric solutions have stronger localization of 
the vortex energy in the square lattice part of the interface. The 
corresponding power diagram is presented in Fig. 3(b); they exist 
in almost the same range of the propagation constant as five and 
six-lobe solutions, but with lower powers. Power threshold has the 
lowest values for six-lobe solutions followed by the three-lobe and 
then five-lobe solutions.

Next, we want to put more attention to the investigation of 
five-lobe vortex solutions. We choose the same input ring vor-
tex beam as in Fig. 1(a) but with different topological charges 
TC. Fig. 4 presents five different kinds of discrete vortex solutions 
at the interface separating square and hexagonal lattice, observed 
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