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The problem of the chiral (Klein-like) tunneling across a potential barrier in bilayer graphene is 
addressed. The electron wave functions are treated as massive chiral particles. This treatment allows 
us to compute the statistical complexity and Fisher–Shannon information for each angle of incidence. 
The comparison of these magnitudes with the transmission coefficient through the barrier is performed. 
The role played by the evanescent waves on these magnitudes is disclosed. Due to the influence of these 
waves, it is found that the statistical measures take their minimum values not only in the situations 
of total transparency through the barrier, a phenomenon highly anisotropic for the chiral tunneling in 
bilayer graphene.

© 2015 Elsevier B.V. All rights reserved.

The calculation of information theory measures in quantum 
systems is nowadays a subject of increasing interest. The knowl-
edge of the probability density is the basic ingredient [1–3] neces-
sary to calculate these magnitudes, concretely the statistical com-
plexity and the Fisher–Shannon information.

These indicators have been directly computed from the wave 
functions in different bound states such as for instance the H-
atom [4]. In other cases, they have been numerically derived from 
a Hartree–Fock scheme [5,6]. These statistical quantifiers have re-
vealed a connection with physical measures, such as the ionization 
potential and the static dipole polarizability in atomic physics [7,8]. 
Other relevant properties concerning the bound states of atoms 
and nuclei have been put in evidence when computing these in-
dicators on these many-body systems. For instance, the extremal 
values of these measures on the closure of shells [9,10] and the 
trace of magic numbers [11,12] are some of these properties.

For no bound states, we have the particular case of the scat-
tering process of quantum particles through potential barriers. It 
can be a first example to study the relationship of these entropy–
information measures with some physical magnitude, such as the 
reflection coefficient. Thus, in the context of non-relativistic quan-
tum mechanics (NRQM), it has been pointed out [13] that these 
statistical magnitudes present their minimum values just in the 
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situations where the total transmission through the barrier is 
achieved. A similar result was obtained for the crossing of a barrier 
in a relativistic-like quantum mechanics context. This is the case of 
the so-called Klein tunneling [14] in single-layer graphene [15].

In this work, we are concerned with the calculation of these en-
tropic magnitudes in another quantum scattering process through 
a potential barrier, specifically the Klein-like tunneling in bilayer 
graphene (BLG), a subject that can have interest in applied con-
densed matter [16–18].

Let us recall that the Klein tunneling (or paradox) is an ex-
otic phenomenon with counterintuitive consequences in relativistic 
quantum mechanics (RQM) that has deserved a great interest in 
particle, nuclear and astrophysics [19–24]. Klein [14] showed that, 
in the frame of RQM, it is possible that all incident particles (elec-
trons in the case of graphene) can cross a barrier, independently 
of how high and wide the potential barrier is. This is a paradox-
ical fact from the point of view of the NRQM, where we know 
that the higher and wider the potential barrier is, less number 
of particles can tunnel the barrier (exponential decay). The Klein 
paradox has never been realized in laboratory experiments. How-
ever, a possibility to observe this type of phenomenon has recently 
been proposed and tested by means of graphene [25–28]. In partic-
ular, the discussion of the Klein tunneling and related phenomena 
for Dirac fermions in monolayer and bilayer graphene was given in 
Ref. [25].
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It must be remarked at this point that although the Klein tun-
neling of an electron can occur in an AA-stacked BLG [29], it is 
more accurate to use the term “chiral tunneling” [16] for BLG in-
stead of “Klein tunneling” since, as below displayed, at normal 
incidence the perfect reflection of electrons takes place.

From an electronic point of view, BLG is a 2D gapless semicon-
ductor with chiral electrons and holes with a finite mass m [25]. 
The mass of these quasiparticles is a non-relativistic consequence 
of their parabolic energy spectrum. The chirality comes from the 
spinorial nature of their wavefunction, similar to the chirality of 
the carriers in single-layer graphene that can be viewed as rela-
tivistic fermions, in that case massless due to their linear energy 
dispersion at low Fermi energies. For the present case of the BLG, 
the quadratic energy dispersion implies four possible solutions for 
a given energy E ,

E = ± h̄2k2
F

2m
, (1)

where h̄ is the Planck’s constant divided by 2π , kF is the Fermi 
wavevector of the quasiparticle, and m ∼ 0.035 me , with me the 
electron mass, is the effective mass of the carriers taken from 
Ref. [30], a value that is between the theoretical (m = 0.054 me) 
and the experimental (m = 0.028 me) values of this parameter re-
ported in the Katsnelson monograph [16]. Two solutions corre-
spond to propagating waves and the other two to exponentially 
growing and decaying waves (evanescent waves). The expression 
of these wavefunctions can be found by solving the off-diagonal 
Hamiltonian that describes the low-energy quasiparticles in BLG 
[25,31]:

H0 = − h̄2

2m

(
0 (k̂x − ik̂y)

2

(k̂x + ik̂y)
2 0

)
, (2)

where (k̂x, ̂ky) = −i(∇x, ∇y).
In order to study the chiral tunneling in BLG, an one-dimen-

sional square potential barrier V (x) is considered on the x–y
plane:

V (x) =
⎧⎨
⎩

0, x ≤ 0 (Region I),

V 0, 0 < x < L (Region II),

0, x ≥ L (Region III),
(3)

where V 0 and L are the height and width of the barrier, respec-
tively, and the dimension along the Y axis is supposed to be in-
finite. This local potential barrier can be created by the electric 
field effect using local chemical doping or by means of a thin in-
sulator [32,33]. The effect of this potential barrier has the chiral 
tunneling as the most intriguing effect for V 0 > E , where electrons 
outside the barrier transform into holes inside it, or vice versa, 
a phenomenon that allows to the charge carriers to pass through 
the barrier. In the case of BLG, this charge conjugation requires the 
appearance of evanescent waves (holes with wavevector ik) inside 
the barrier.

Now, we consider an electron wave that propagates under the 
action of the Hamiltonian H = H0 + V (x) at an incident angle φ
respect to the x axis. The solutions for the two-component spinor 
representing these quasiparticles in the different regions are:

�I (x, y) =
{

a1

(
1

se2iφ

)
eikxx + b1

(
1

se−2iφ

)
e−ikxx

+ c1

(
1

−s · h

)
eκxx

}
eiky y, (4)

�II(x, y) =
{

a2

(
1

s′e2iφ′

)
eik′

xx + b2

(
1

s′e−2iφ′

)
e−ik′

xx

+ c2

(
1

−s′ · h′
)

eκ ′
xx + d2

(
1

−s′/h′
)

e−κ ′
xx

}
eiky y, (5)

�III(x, y) =
{

a3

(
1

se2iφ

)
eikxx + d3

(
1

−s/h

)
e−κxx

}
eiky y, (6)

where kx = kF cosφ, ky = kF sin φ are the wavevector components 

of the propagative waves, κx = kF

√
1 + sin2 φ is the decay rate 

of the evanescent wave, kF = √
2m|E|/h̄ is the Fermi wavevec-

tor as given in expression (1), s = sgn(−E), h = (

√
1 + sin2 φ −

sin φ)2, outside the barrier. The values of the correspondent 
parameters inside the barrier are: k′

x = k′
F cosφ′ , k′

y = k′
F sin φ′ , 

κ ′
x = k′

F

√
1 + sin2 φ′ , k′

F = √
2m|E − V 0|/h̄, s′ = sgn(V 0 − E), h′ =

(

√
1 + sin2 φ′ − sinφ′)2, φ′ = arcsin (

√|E|/|E − V 0| sin φ).
The nine amplitudes (a1, b1, c1, a2, b2, c2, d2, a3, d3) are com-

plex numbers determined, up to a global phase factor, by the 
normalization condition and the boundary constraints, namely the 
continuity of both components of the spinor and their derivatives, 
at x = 0 and x = L. All of them can be numerically calculated. Re-
mark that divergent exponential waves only take place in Region II 
and the evanescent (exponentially decaying) waves appear in the 
three regions.

The scattering region (Region II) provokes a partial reflection 
of the incident electron wave. The reflection coefficient R gives 
account of the proportion of the incoming electron flux that is re-
flected by the barrier. The expression for R is:

R = Fluxreflected

Fluxincident
= |b1|2

|a1|2 . (7)

In this process, there are no sources or sinks of flux, then the 
transmission coefficient T is given by T = 1 − R . This coefficient T
is plotted in Fig. 1a (dashed line) for a given height V 0 of the po-
tential barrier. The anisotropy of the behavior of T is evident in 
that figure but contrarily to the single-layer graphene case, where 
massless Dirac fermions in normal incidence (φ = 0) are perfectly 
transmitted through the barrier [25], here in the BLG case the mas-
sive chiral fermions are always totally reflected for angles close to 
φ = 0. The total transparency, T = 1, can be found for other angles 
of incidence. This is just the paradoxical chiral (Klein-like) tunnel-
ing in graphene consisting in the penetration of its charge carriers 
through a high and wide barrier, E � V 0 and 2π/kF � L. The cal-
culation of T (and all other magnitudes plotted in the figures) 
has been performed by taking for the electron and hole concen-
tration the typical values used in experiments with graphene (see 
Ref. [25]).

Now, the calculation of the statistical complexity C and the 
Fisher–Shannon entropy P is presented. These magnitudes are 
the result of a global calculation done on the probability density 
ρ(x, y) given by ρ(x, y) = �+(x, y)�(x, y), taking into account 
that the region of integration must be adequate to impose the 
normalization condition in the two-component spinor. As a con-
sequence of having a pure plane wave in the Y axis, the density 
is a constant in this direction. Then, without loss of generality, if 
we take a length of unity in the Y direction, the density does not 
depend on y variable, ρ(x, y) ≡ ρ(x). The expressions for densi-
ties obtained for the different regions are cumbersome and are 
not explicitly given. To normalize these densities, the length of 
the integration interval in the X direction has been taken to be 
[−2π/kx, −π/kx], [0, L] and [L +π/kx, L + 3π/kx], for Regions I, II 
and III, respectively. Observe that in Regions I and III the integra-
tion intervals are taken separated from the barrier walls at x = 0, L
in order to capture in the calculations the effect of the coupling 
between the evanescent and the plane waves. Evidently, when the 
intervals in these regions are taken close to the walls x = 0, L, the 
contribution of the evanescent waves influences in an important 
manner the value taken by the statistical indicators. Farther from 
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