
Physics Letters A 372 (2008) 5932–5937

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Optical phonon modes in a free-standing quantum wire with ring geometry

Qing-Hu Zhong ∗

Department of Physics, JiaYing University, Meizhou, Guangdong 514015, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 July 2008
Accepted 28 July 2008
Available online 30 July 2008
Communicated by A.R. Bishop

PACS:
68.35.Ja
68.65.La
63.20.Dj
63.20.Kr

Keywords:
Optical phonon modes
Electron–phonon interaction
Quantum wire

The confined longitudinal-optical (LO) phonon and surface-optical (SO) phonon modes of a free-standing
quantum wire with ring geometry are discussed within the dielectric continuum (DC) approximation.
Two branches of SO phonon modes have been investigated. The frequencies of the SO phonons are
found to be dispersed and radius dependent for small size systems. When the wave vector qz → ∞,
the frequencies of each SO modes converge to the frequency values of the single planar heterostructure.
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1. Introduction

With the rapid progress in semiconductor nanotechnology,
such as with molecular-beam epitaxy, metal-organic chemical-
vapour deposition and chemical lithography, various kinds of
low-dimensional microstructure including quantum wells (QWs),
quantum well wires (QWWs) and quantum dots (QDs) can be
fabricated. Due to their potential technological application, much
attention have been attached to these low-dimensional structure
[1–6]. In these low-dimensional quantum systems, it is well known
that the phonons are also confined, which makes the phonon
modes more complicated than those in the bulk materials [7].
Furthermore, the electron–phonon interaction in these confined
systems is one of the important aspects in determining their prop-
erties in physical processes, such as in the transport process or
the electron relaxation process. Therefore, in order to describe
the coupling between electron and phonon properly in these low-
dimensional quantum systems, a well-known phonon mode and
electron–phonon interaction Hamiltonian are essential.

Since the pioneering work of Licari [8] and Fuchs [9] on the
phonon modes in confined quantum systems, several authors
have made their contributions to studying the phonon modes
and electron–phonon interaction. Various theoretical models, such
as the dielectric continuum (DC) model [8,10–12], hydrodynamic
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model [13], and microscopic calculation modes [14] have been
adopted. The DC model had been widely used for its simplicity and
efficiency. Mori and Ando [15] have investigated the phonon modes
in single- and double-heterostructure QWs within the frame-
work of the DC approach. Liang and Wang [16] have derived the
transverse-optical (TO) and longitudinal-optical (LO) modes as well
as four branches of interface optical modes in a GaSb–InAs–GaSb
QW. Klein [17] and Roca [18] have derived the polar optical phonon
modes for spherical quantum dots. Cruz [19,20] has obtained the
interface-optical (IO) phonon in GaAs/AlxGa1−xAs quantum spheres
and derived the surface optical (SO) phonon modes in free stand-
ing rectangular quantum boxes. Zhou et al. [21] have derived the
IO phonon modes in a rectangular QD’s embedding in other polar
material. Xie and Chen [22] have derived the IO and SO phonon
mode in a quantum well wires. Li and Chen [23] have derived the
LO, TSO (top surface optical) and SSO (side surface optical) modes
in a freestanding cylindrical quantum dots. Zhang et al. [24] have
derived the LO and IO (SO) phonon modes in a multi-shell sphere
quantum dots.

In the present Letter, we derived the general expressions of the
phonon modes, the dispersion relation, and electron–phonon Fröh-
lich interaction Hamiltonian in a free-standing quantum wire with
ring geometry within the framework of dielectric continuum ap-
proximation. Result reveals that there exist two branches of SO
modes which are localized at the inner and outer radius respec-
tively. The frequencies of the SO phonons are found to be dispersed
with small wave-vector qz . With increasing qz , the frequency of
each SO modes approaches the frequency values of single planar
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Fig. 1. The shape of a free-standing cylindrical quantum wire with a ring geometry.

heterostructure. Especially, other than the quantum wire systems
studied by Xie and Chen [22] in which the frequencies of the
SO phonons are radius independent, in our system the frequen-
cies for both of the SO modes are size dependent for the small
well-width. This Letter is organized as follows: In Section 2, the
Fröhlich electron–SO (LO) phonon interaction Hamiltonian and the
SO phonon dispersion relations were derived. In Section 3, the nu-
merical calculations were performed on the CdS quantum wire,
and the dependence of the dispersion frequencies and the cou-
pling intension for the SO phonon modes on the wave-vector qz ,
the quantum number m and the size of the system were given and
discussed. Finally, in the last section, a brief summary is given.

2. Model and theory

As shown in Fig. 1 we consider a free-standing cylindrical quan-
tum wire with ring geometry. The inner and outer radius are R1
and R2, respectively; the length of the wire is L, which satisfied
L � R2. Under the continuum approximation, we will derive an
expression for Fröhlich interaction in our system of concern. We
start with the electrostatic equations

∇ · D = 4πρ0(r), (1)

D = εE = E + 4π(P ), (2)

E = −∇φ, (3)

where D , E , P and φ are the electric displacement, electric field,
electric polarization density and electric potential, respectively.
ρ0 is the charge density and ε is the dielectric constant of the
annulus wires. From the above equations, we can get

ε∇2φ(r) = 0, (4)

for free oscillation.

2.1. The LO vibrational eigenmodes

There are two possible solutions for Eq. (4), one of which is
ε = 0 inside the wire. Since in a polar crystal,

ε(ω) = ε∞ + ε0 − ε∞
1 − ω2

ω2
TO

, (5)

where ε0 and ε∞ are the static and high-frequency dielectric con-
stants and ωTO is the frequency of the TO phonon, ε = 0 would
give

ω2 = ω2
TO

ε0

ε∞
= ω2

LO. (6)

Eq. (6) is just the Lyddane–Sachs–Teller (LST) relation, which de-
scribes the bulk LO modes of frequency ω = ωLO. In this case, the

electric potential in Eq. (4) is an arbitrary function of r. The eigen-
functions of the confined LO phonon can be chosen as

φml(r) =
{

Amlτml(
amlρ

R1
)e−imϕe−iqz z, R1 � ρ � R2,

0, otherwise,

τml

(
amlρ

R1

)
= Jm

(
amlρ

R1

)
+ bml Nm

(
amlρ

R1

)
, (7)

where Jm(x) and Nm(x) are the mth-order Bessel and Neumann
functions; Aml , aml and bml can be determined by the boundary
conditions of electrostatic at ρ = R1, R2.

The polarization vectors (P = ∇φ/4π ) for confined LO mode
are calculated by considering Eqs. (2) and (3) and the condition
ε = 0. We get

P LO
ml = 1 − ε

4π
∇φml(r)

= 1 − ε

4π
Aml

{
1

2

[
τm−1,l

(
amlρ

R1

)
− τm+1,l

(
amlρ

R1

)]
amlρ

R1
eρ

− im

ρ
τml

(
amlρ

R1

)
eϕ − iqzτml

(
amlρ

R1

)
ez

}
e−imϕe−iqz z. (8)

To derive the free phonon Hamiltonian, we need the dynamic
equations of motion of the crystal lattice [15,17,25]:

μü = −μω2
0u + eE loc, (9)

P = n∗eu + n∗αE loc, (10)

where μ is the reduced mass of the ion pair and u = u+ − u−
is the relative displacement of the positive and negative ions, ω0
is the frequency associated with the short-range force between
ions, n∗ is the number of ion pairs per unit volume, and α is the
electronic polarizability per ion pair, E loc is the local field at the
position of the ions.

The Hamiltonian of the free vibration is given by

Hph = 1

2

∫
d3r

(
n∗μu̇ · u̇ + n∗μω2

0u · u − n∗eu · E loc
)
. (11)

We have made use of the harmonic approximation for P , u, and
E loc.

The local field in macroscopic approach is [25]

E loc = −8

3
π P . (12)

E loc is the electric field associates with the LO vibrational mode.
Combining Eqs. (10) and (12), we have

u = 1 + (8/3)πn∗α
n∗e

P . (13)

Hence, the confined LO phonon Hamiltonian from Eq. (11) can be
written as

HLO = 1

2

∫
d3r

[
n∗μ

(
1 + (8/3)πn∗α

n∗e

)2

Ṗ
∗ · Ṗ

+ n∗μω2
LO

(
1 + (8/3)πn∗α

n∗e

)2

Ṗ
∗ · Ṗ

]
. (14)

The LO polarization vectors from Eq. (8) form an orthonormal and
complete set:

∫
d3r 2n∗μ

(
1 + (8/3)πn∗α

n∗e

)2

P mlqz∗
i · P

m′l′q′
z

j

= δi jδmm′δll′δqzq′
z
, (15)

from which Aml can be determined,
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