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A sufficient condition for a network system to reach a consensus state of the local majority rule is shown. 
The influence of interpersonal environment on the occurrence probability of consensus states for Watts–
Strogatz and scale-free networks with random initial states is analyzed by numerical method. We also 
propose a stochastic local majority rule to study the mean first passage time from a random state to a 
consensus and the escape rate from a consensus state for systems in a noisy environment. Our numerical 
results show that there exists a window of fluctuation strengths for which the mean first passage time 
from a random to a consensus state reduces greatly, and the escape rate of consensus states obeys the 
Arrhenius equation in the window.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Consider a group of individuals in a process of forming opinions 
on an issue. Individual opinions generally have a wide spectrum 
and they are liable to change owing to mutual influences among 
individuals. The process of opinion dynamics may eventually lead 
to a consensus among the individuals, or to a certain fragmental 
pattern of opinions, or to a periodic oscillation between configu-
rations of opinions. Many models have been constructed and ana-
lyzed to answer the question of how individual opinions may form 
in a complex interpersonal environment, in particular, that of how 
a group consensus is reached has attracted great research interest 
[1–14]. In theoretical study, the interpersonal environment can be 
visualized as a network in which, the nodes represent individuals 
and the edges between the nodes signify the mutual social influ-
ences between the connected pairs. Opinion space can be either 
discrete or continuous. Physics community, motivated by the re-
search in spin systems, often take discrete opinion spaces for the 
study [1–3]. The local majority rule (LMR) uses binary opinions to 
assign two states, +1 and −1, to a node, and its dynamics spec-
ifies a node-state in the next time-step as the state possessed by 
the majority of its neighbors [15,16]. One of the equilibrium states 
for the dynamics is a group consensus, which is a configuration 
that all node-states are the same. In this paper, we analyze the 
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relation between the occurrence of a group consensus and the in-
terpersonal environment for the opinion dynamics of LMR.

Although LMR is simple for only considering the environmen-
tal or social preference from the neighbors, the dynamics is highly 
nonlinear. In the analysis we first show a sufficient condition for 
reaching a consensus; however, a necessary and sufficient condi-
tion cannot be obtained. Thus, to gain more understandings about 
the effect of interpersonal environment for reaching a consen-
sus, we employ statistical measures to study the occurrence of 
a consensus state including stochastic process. The change of a 
node state depends only on the states possessed by the connected 
neighbors for LMR; one can expect that the geometric distribu-
tion of edges plays an important role in the type of equilibrium 
states reached by a system [17,18]. As the geometric structure of a 
network can be described by its connection matrix, we introduce 
proper parameters to characterize a set of connection matrices 
of Watts–Strogatz (WS) or scale-free (SF) networks [19–23]. Then, 
the members belonging to a set have the same global geometric 
property, we calculate numerically the occurrence probability of 
reaching a consensus for a set of connection matrices with random 
initial states, and the results are analyzed to obtain the geometric 
effect on the reachability of consensus states for WS and SF net-
works.

Another issue related to the occurrence of a consensus state 
is that how an interpersonal environment with fluctuation affects 
the reachability and the stability of a consensus state. Moreira et 
al. used a mean-field approach to show that the presence of fluc-
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tuation may increase the occurrence probability and decrease the 
first-passage time of a consensus state for systems with small-
world characters [24]. Other form of stochastic LMR was also pro-
posed in the literatures [25–27]. To have a detailed understanding 
on this issue, we propose a stochastic LMR in which, a component 
of white noise is added to a node-state. Then, the stochastic LMR
is employed to study the mean first-passage time from a random 
state to a consensus state, and a window of fluctuation strength, 
which makes the mean first passage-time to be much shorter than 
the result of no fluctuation, is found. Moreover, the escape rate of 
a consensus state is shown to obey the Arrhenius equation when 
fluctuation strength is in the window, and the geometric influence 
on the prefactor and the activation energy of the Arrhenius equa-
tion is also discussed.

This paper is organized as follows. In Section 2, we define LMR, 
give different types of equilibrium states, and show that an irre-
ducible and primitive connection matrix of a network is a sufficient 
condition for reaching a consensus. In Section 3, we first con-
struct different sets of connection matrices of WS and SF networks, 
each set is specified by a global geometric property. Then, the 
occurrence probability of consensus states in a set of connection 
matrices with random initial states is calculated, and the geomet-
ric effect on the occurrence probability is analyzed. In Section 4, 
a stochastic LMR is proposed to study the property of consen-
sus states when fluctuation appears. The numerical results for the 
mean first-passage time from a random configuration to a consen-
sus state and the escape rate of a consensus state are given and 
analyzed. Finally, we summarize the results in Section 5.

2. Local majority rule and equilibrium states

We first specify the LMR and classify its equilibrium states. Con-
sider a network system with the distribution of edges between 
nodes given by an N × N connection matrix Γ . Here the entries of 
the matrix Γ are given as γi j = 1 for the connected nodes i and j, 
and 0 otherwise. The dynamic variable associated with node i at 
time t is denoted as xi(t), which takes discrete values, either 1 or 
−1. The system evolves from an initial to a new configuration in 
discrete time step according to LMR whose operation can be ei-
ther synchronous or asynchronous. In this work, we consider the 
synchronous dynamics for which, the rule can be written as

xi(t + 1) = sgn

(
N∑

j=1

γi jx j(t)

)
(1)

for i = 1, . . . , N , where the sgn function is a standard threshold 
function with sgn(x) = +1 for x > 0 and −1 for x < 0, and we set 
xi(t + 1) = xi(t) for 

∑N
j=1 γi j x j(t) = 0. The rule has been applied 

widely to the study of discrete neural networks. One can use the 
Lyapunov energy function,

E(t) = −
N∑

i=1

xi(t)

[
N∑

j=1

γi jx j(t − 1)

]
, (2)

to show that there exists equilibrium states with the period 1 or 2
[15,16]. For the equilibrium states of period-1, there are two types 
of configurations: One is consensus states for which, all nodes are 
in a same state, 1 or −1; the other is partial consensus states for 
which, only part of the nodes are in the same state. For those with 
period-2, the system oscillates between a pair of configurations.

The structure of connection matrix Γ is crucial for the type 
of equilibrium states reached by a trajectory, we then analyze the 
relation between Γ and the equilibrium state reached by a sys-
tem. By introducing X(k) = (x1(k), x2(k), . . . , xN (k))τ with the su-
perscript τ for the transpose, we rewrite Eq. (1) as

X(k + 1) = φ
(
Γ · X(k)

)
(3)

for which, the components are given as

xi(k + 1) = φ

(
N∑

j=1

γi j x j(k)

)
. (4)

Here, φ(x) is the same as the function sgn(x) of Eq. (1) for x �= 0, 
but it has the value φ(x) = 1 at the point x = 0 for the convenience 
of analysis without losing any generality.

A nonnegative Γ is either reducible or irreducible. For a re-
ducible Γ , we can relabel the nodes to represent Γ as the union 
of disjoint submatrices [28]. For example, Γ may consist of two 
submatrices,

Γ =
(

Γ1 0
0 Γ2

)
, (5)

where Γ1 is n1 × n1 and Γ2 is n2 × n2 matrices with n1 + n2 = N . 
Because of lacking communications between submatrices, a con-
sensus state cannot be guaranteed to be reached by a system.

Suppose that Γ is irreducible. Then, we can classify Γ into two 
types, primitive and imprimitive, based on the Perron–Frabenius 
theorem [28]. As Γ is primitive, there exists an integer n that (Γ )n

is positive, that is, ((Γ )n)i j > 0 for i, j = 1, . . . , N . We observe that

φ
(
Γ · φ(Γ · X)

) ≥ φ
(
Γ ⊗2 · X

)
(6)

with Γ ⊗2 = Γ ⊗ Γ , where the symbol ⊗ represents the Boolean 
product which is defined as (Γ ⊗ Γ )i j = 1 for (Γ · Γ )i j ≥ 1 and 
0 otherwise. Then, by applying the inequality of Eq. (6) n times 
successively, we have

X(n + 1) = φ
(
Γ

(· · φ(
Γ φ

(
Γ X(0)

))) · ·) ≥ φ
(
Γ ⊗n X(0)

)
. (7)

Since (Γ )n is positive, we have Γ ⊗n = [1], where [1] is the N × N
matrix with 1 for all entries. Consequently, we have

X(n + 1) = ±IN , (8)

where IN is the N-dimensional column vector with 1 for all en-
tries, and the plus (minus) sign on the right hand side is taken 
for 

∑N
i=1 xi(0) ≥ 0 (

∑N
i=1 xi(0) < 0). Thus, every trajectory will be 

leaded to a consensus state for a primitive Γ . However, the con-
dition of primitive Γ is sufficient but not necessary, as an explicit 
example shown below that a trajectory may also be leaded to a 
consensus state for an imprimitive Γ .

Consider the case of imprimitive Γ . As the edges between 
nodes are undirected in a network, the matrix Γ is symmetric, 
and we have −ρ(Γ ) ∈ σ(Γ ) and | − ρ(Γ )| = ρ(Γ ), where σ(Γ )

and ρ(Γ ) are the spectrum and the spectrum radius of Γ , respec-
tively. This gives the index of imprimitivity to be 2. Then, we can 
relabel the nodes to have Γ in the form of

Γ =
(

0 Γ1
Γ2 0

)
, (9)

where Γ1 and Γ2 are n1 ×n2 and n2 ×n1 matrix, respectively, with 
n1 + n2 = N . Based on this form, we consider an explicit Γ for 
which, the submatrices Γ1 and Γ2 are

Γ1 = (Γ2)
τ =

⎛
⎜⎜⎝

1 1 0 0
1 1 1 0
0 1 1 1
0 1 1 1

⎞
⎟⎟⎠ . (10)

This may lead systems to a variety of equilibrium states for dif-
ferent initial states, including two consensus states, two partial 
consensus states, and 6 distinct cycles of period 2. In fact, among 
the total 256 configurations for the initial states of trajectories, 
there are 89 for reaching a consensus state, 8 for a partial con-
sensus, and 159 for a cycle of period 2.
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