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In this paper, we study a piecewise-smooth dynamical system of a Filippov type that has a specific 
discontinuity in the form of a hold-on term. The system resembles a driven dry-friction oscillator with the 
difference that the magnitude of the friction depends on the value of a local maximum of the oscillator 
displacement. Due to the hold-on term, the definition of the sliding region is not trivial. Along with a 
sliding region that is found analytically and is valid for any orbits, there exists a sliding region that we 
name ‘virtual’ because it is specific for each particular orbit. The existence of the virtual sliding region 
is explained by the specific discontinuity — the hold-on term — and the behavior associated with the 
sliding region and its boundaries can be considered as a new type of sliding-associated behavior.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Systems described by nonsmooth (or piecewise-smooth) vector 
fields or discrete-time equations are investigated in the frame-
work of nonlinear dynamics [1–3]. Nonsmooth systems, both 
continuous- and discrete-time, model many realistic systems: me-
chanical impact [4] and dry-friction oscillators [5–7], hybrid sys-
tems [8,9], sigma–delta modulators [10], DC–DC converters [11,12], 
microelectromechanical systems (MEMS) [13,14] and superconduc-
tive resonators [15]. Nonsmooth systems give rise to a number of 
complex phenomena that are not found in smooth systems [16–20]
and require a new approach to classification [21] and numerical 
modeling [9,22,23].

In this paper we study a piecewise-smooth electronic oscilla-
tor that models an electrostatic vibration energy harvester [24–26], 
a device that converts kinetic energy of ambient vibrations into 
electricity. This device contains both mechanics (a high-Q res-
onator) and conditioning electronics, coupled together through a 
variable capacitor (a transducer). The circuit generates a piecewise 
smooth nonlinear damping force and influences the dynamics of 
the resonator. The interest in the dynamics of these systems is 
driven by practical problems. The desired mode of the oscillator is 
a steady-state harmonic regime, but the oscillator can also display 
very complex behavior and bifurcations typical of both smooth and 
nonsmooth systems [27,28]. A mathematical model of the system 
takes the form of nonlinear piecewise-smooth differential equa-
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tions [25,26], namely Filippov systems, with a discontinuity ap-
pearing due to the conditioning electronics.

In our previous works, we have investigated steady-state oscil-
lations [25,26] and develop methods that can be used to describe 
steady-state oscillations in electrostatic oscillators of this type. In 
study [27], we gave preliminary results on chaotic behavior. The 
limit on converted power and optimization problem is discussed 
in [29]. Despite seeming simplicity, the model studied in the paper 
can demonstrate a broad range of nonlinear behavior associated 
with both smooth and piecewise smooth dynamical systems. In 
this study, we investigate specific behavior associated with slid-
ing that is displayed due to both the non-smoothness of the vector 
field governing the system dynamics and a hold-on term.

Indeed, the equation that governs the dynamics of the elec-
tronic oscillator resembles a dry-friction oscillator and includes 
a term that can be seen as electrical damping that is defined by 
the sign of the velocity. This term introduces the “classic” non-
smoothness of the vector field. On the other hand, this electrical 
damping depends on the local maximum value of the resonator 
displacement. Over the time interval until the next local maxi-
mum is not reached, the electric damping term does not change. 
However, if a new local maximum is reached, the damping term 
changes. Therefore, we have a type of a non-smooth nonlinear 
system with a hold-on effect. Apart from a normal sliding re-
gion whose boundaries can be determined using the approach 
described, for instance, in [2], the hold-on effect results in a 
piecewise-defined boundary of a sliding region. It is a novel type 
of behavior and we denote this boundary and the sliding region 
as ‘virtual’ because they are specifically defined for each orbit. In 
this paper we discuss some specific dynamics associated with this 
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Fig. 1. (a) Scheme of the electronic oscillator that models a vibration electrostatic 
energy harvester. (b) Scheme of a digital detector of local maxima. It samples a 
signal with a very high frequency and hold three values. By comparing the middle 
value with the others, it detects an event (peak of the signal).

Fig. 2. Scheme of an analog detector of local maxima/minima (analog peak detec-
tor). It contains a capacitor, a resistor, an operational amplifier, a comparator with 
hysteresis and a signal filter to remove noise. The output of the comparator is hold 
and compared with the current value.

phenomenon: the collision of orbits with the virtual sliding region. 
Virtual sliding boundaries and sliding regions will also exist in a 
similar system employing nonlinear resonators [28].

2. Statement of the problem

The electronic oscillator under investigation consists of a high-Q 
linear resonator, a variable capacitor (transducer) Ctran and a con-
ditioning circuit as shown in Fig. 1. A detailed description of the 
conversion cycle and a schematic view of the system can be found 
in [25,26]. Briefly, the operation of the electronic oscillator can be 
described as follows: a resonator oscillates as it is driven by ambi-
ent vibration and, since it is attached to a transducer, this causes 
changes of the transducer capacitance Ctran(t) with time. The con-
ditioning circuit determines a local maximum of the time-varying 
capacitance and charges it at this moment. When the transducer 
capacitance decreases, it has a charge given by the conditioning 
circuit. Therefore, the conditioning circuit generates an electro-
static force that acts on the mechanical resonator together with 
external driving. When the transducer capacitance increases, there 
is no charge on the transducer, and the electrostatic force is ab-
sent. Hence, the force is a piecewise defined function: ft = 0 if 
ẋ > 0 and ft �= 0 otherwise, and will be referred later as ft(x, ̇x). 
Here x is the dimensional displacement of the resonator.

The normalized displacement y = x/d of the resonator can be 
described by a second-order ordinary differential equation

y′′ + 2β y′ + y = α cos(Ωτ) + ft
(

y, y′) (1)

where the prime denotes the derivative with respect to normalized 
time τ . The normalized parameters are: time τ = ω0t , the dissipa-
tion β = b/(2mω0), the external frequency Ω = ωext/ω0 = 1 + σ
(σ is a possible small mismatch between the two frequencies) and 
external acceleration amplitude α = Aext/(dω2

0). The dimensional 
parameters used for the normalization are as follows: m is the 
mass of the resonator, b is the damping factor, ω0 = √

k/m is the 
natural frequency, ωext is the external frequency and Aext is the 
external acceleration amplitude.

The conditioning circuit operates the switches from Fig. 1a us-
ing a detector of local maxima/minima (peak detector). It can be 
either a digital detector (shown in Fig. 1b) or analog (shown in 
Fig. 2). The performance of the digital peak detector is described 

as follows. This detector has a sampling block (with a very high 
sampling frequency f s) and a block that can store previous values 
of the capacitance. The detector of local maxima analyses the three 
recent values of the transducer capacitance Ctran and if the middle 
value of Ctran is greater than the two other values, it detects an 
event (a local maximum). Since Ctran = C0/(1 − y(τ )) is a smooth 
function of the displacement y(τ ), where C0 is the capacitance of 
the transducer if no force is applied, finding a local maximum or 
minimum corresponds to finding zeroes of the velocity y′ .

An analog peak detector operates as follows. An analog differ-
entiator implemented with an operational amplifier calculates the 
derivative of the input signal. At local maxima at the input, the 
voltage V 1 goes from positive to negative values. The zero-crossing 
of V 1 is detected by a comparator: its output goes from 0 to 1. 
The comparator is provided with a hysteresis characteristic in or-
der to additionally filter the noise. In a similar manner, the minima 
at the input are detected by the circuit, and the comparator output 
goes from 1 to 0. Realistic analog peak detectors also include a fil-
ter that can additionally cut off high-frequency noise (see Fig. 2). 
The analog peak detector model used for simulations presented in 
this paper includes both, a signal filter for noise pre-filtering and a 
comparator with hysteresis to further diminish the effect of noise.

The subsequent conditioning circuit from Fig. 1a processes the 
information about the max/min events, for instance, by generating 
a small pulse for switches SW1 and SW2. We will consider the dig-
ital peak detector as the main case in the paper (most of results 
will be presented for this case), however, we discuss briefly the 
difference in the dynamics of the system for both types of peak 
detectors. We mentioned these two cases since this is an event-
driven system and the peak detector defines the event. Since there 
is a difference in the operation of the two peak detectors, the dy-
namics of the system can be different in these two cases.

Now we can write the function ft , the normalized transducer 
force:

ft
(

y, y′) =
{ νW

1−ymax
, y′ < 0

0, y′ > 0
(2)

where νW = W0/(d2mω2
0) and W0 is the value of energy fixed at 

the transducer at each local maximum of y(τ ) (or equivalently of 
C(τ )). We define ymax as the value of the displacement when the 
peak detector detects an event (a local maximum). In addition, we 
note that a small delay 	τ in the definition of a local maximum 
may exist. For instance, in the case of the digital peak detector, this 
delay 	τ is defined by the sampling time Ts = 1/ f s . In the case of 
the analog peak detector, the delay is defined by the bandwidth of 
the detector.

More discussion on the architecture of the conditioning circuit 
and on optimal regimes of circuit operation can be found in [25,26,
29]. For further numerical simulations we use the parameter values 
proposed in [26]. For a particular system (1) and (2), νW and α can 
change while the other parameters are typically fixed.

3. Normal form of the system and the boundaries of the sliding 
region

Eqs. (1) and (2) can be written in the standard form ẋ = F(x) if 
we introduce the vector x = (x1, x2, x3) where x1 = y, x2 = y′ and 
x3 = τ :

ẋ =
{

F1(x), H(x) > 0
F2(x), H(x) < 0

(3)

The vector functions F1,2 are

Fi(x,P) =
{ x2

−2βx2 − x1 + α cosΩx3 + ai ft

1
, i = 1,2 (4)
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