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We consider (2 + 1)- and (1 + 1)-dimensional long-wave–short-wave resonance interaction systems. We 
construct an extensive set of exact periodic solutions of these systems in terms of Lamé polynomials 
of order one and two. The periodic solutions are classified into three categories as similar, mixed, 
superposed elliptic solutions. We also discuss the hyperbolic solutions as limiting cases.
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1. Introduction

The study of nonlinear waves is of broad scientific interest [1]. 
Nonlinear waves in multi component long-wave–short-wave reso-
nant interaction (LSRI) system have received significant attention 
in recent years. Here nonlinear resonance interaction between a 
low frequency long-wave (LW) and multiple high frequency short 
waves (SWs) takes place when the phase velocity (say v p) of 
the former exactly or approximately matches with the group ve-
locity (say v g ) of the short waves, that is, v p � v g . This LSRI 
phenomenon has a wide range of applications ranging from wa-
ter waves to nonlinear optics which also include biophysics and 
plasma physics. In the SW components the soliton is formed due 
to a delicate balance between the dispersion and the nonlinear in-
teraction of LW with the SWs while in the LW component, the 
soliton formation is determined solely by the self-interaction of 
short-wave packets.

The pioneering work of LSRI system was done by Zakharov [2]. 
Later on, the general Zakharov equations in one dimension have 
been reduced to the integrable Yajima–Oikawa system in Ref. [3]. 
At the same time, independently Benney has derived the model 
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equation for the interaction of short wind-driven capillary grav-
ity wave in deep water [4]. The experimental study of LSRI in a 
three-layer fluid was carried out by Kopp and Redekopp [5]. Then, 
in a physical setup of two-layer fluid model the one- and two-
dimensional LSRI systems have been derived and bright and dark 
soliton solutions have also been obtained in Refs. [6,7].

Recently, Kanna et al. have shown that the following (1 +
1)-dimensional (i.e., one time and one space dimensions) LSRI sys-
tem [8]

i S j,t + δS j,xx + L S j = 0, j = 1,2, (1a)

Lt = 2
2∑

j=1

c j|S j|2x , (1b)

can be deduced from a set of three coupled nonlinear Schrödinger 
equations governing the propagation of three optical fields in a 
triple mode optical fiber, by applying the asymptotic reduction 
procedure. In Eq. (1), S j and L, respectively, indicate jth SW and 
(one) LW, t and x represent the partial derivatives with respect to 
evolutional and spatial coordinates, respectively, and the nonlin-
earity coefficients c j, j = 1, 2, are arbitrary real parameters. Here 
δ = ±1 and for δ = 1 the above system (1) is nothing but the two-
component Yajima–Oikawa (YO) system. Eq. (1) also appears in the 
study of interaction of quasi-resonant two-frequency SW pulses 

http://dx.doi.org/10.1016/j.physleta.2014.09.006
0375-9601/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physleta.2014.09.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:khare@iiserpune.ac.in
mailto:kanna_phy@bhc.edu.in
mailto:tamsel786@gmail.com
http://dx.doi.org/10.1016/j.physleta.2014.09.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2014.09.006&domain=pdf


3094 A. Khare et al. / Physics Letters A 378 (2014) 3093–3101

with a LW [9]. Such multi-component YO system also has been de-
rived in the context of multiple component magnon–phonon sys-
tem [10]. In Ref. [8], we have obtained the bright n-soliton solution 
of the above system (1) and have revealed the fact that the bright 
solitons can undergo two types of fascinating energy sharing col-
lisions. Here the presence of the LW induces nonlinear interaction 
between two SWs which leads to nontrivial collision behaviour. 
The rogue waves of LSRI system with j = 1 (one SW and LW com-
ponents) and δ = 1 have been reported in Ref. [11].

The two-dimensional multi-component LSRI system has also 
received equally good attention as that of their one-dimensional 
counterpart. Particularly the following two-component analogue of 
the (2 + 1)-dimensional (i.e., two spatial coordinates x, y and one 
time coordinate) LSRI system

i[S j,t + ε j S j,y] + δS j,xx + L S j = 0, j = 1,2, (2a)

Lt = 2
2∑

j=1

c j|S j|2x , (2b)

where the subscripts x and y represent the partial derivatives with 
respect to spatial coordinates and t represents temporal coordi-
nate, the nonlinearity coefficients c1 and c2 and the coefficient
ε j , j = 1, 2, are real arbitrary parameters and δ = ±1. Eq. (2)
has been derived as the governing equation for the interaction of 
three nonlinear dispersive waves in optical fiber or in photorefrac-
tive medium by applying a reductive perturbation method [12]. 
In the above system, two SWs propagate in anomalous disper-
sion regime and the real LW propagates in the normal dispersion 
regime. In a recent work [13], Kanna et al. have generalized the 
approach of [12] and derived a M-component LSRI system as the 
propagation equation for multiple dispersive waves (say (M + 1)

waves) in a weak Kerr type nonlinear medium in the small am-
plitude limit. To get further physical insight into the above system 
(2), we would like to point out that the one-component ( j = 1) 
version of Eq. (2) can be derived from the governing equation 
for two-dimensional two-wave interaction [14,15] by following the 
approach of [12]. Thus system (2) is a three-wave generalization 
of SW system in (2 + 1) dimensions. From a mathematical per-
spective, the soliton solutions of system (2), with c1 = c2 = 1 are 
constructed in Refs. [12,16]. Particularly, in Ref. [16] it has been 
shown that the bright solitons exhibit interesting energy sharing 
collisions characterized by intensity (energy) redistribution, am-
plitude dependent phase-shifts and change in relative separation 
distances.

Periodic nonlinear waves can also arise in real physical systems. 
For example, generation of ultrashort pulse-train by using nonlin-
ear transform of a twin frequency signal is one such real system 
arising in nonlinear optics ([17] and references therein). Thus to 
describe real situations one may need special type of periodic so-
lutions. Several periodic solutions of integrable and nonintegrable 
multicomponent nonlinear Schrödinger equations with focusing, 
defocussing and mixed type nonlinear interactions have been ob-
tained in Refs. [17–26], in terms of Jacobi elliptic functions. So far, 
such elliptic wave solutions have not been constructed for the one-
and two-dimensional two-component LSRI systems (1) and (2) as 
these integrable systems have been reported recently. This paper is 
aimed at constructing different families of elliptic wave solutions 
of (1) and (2) in a systematic way.

The organization of the paper is as follows. In Section 2, the el-
liptic wave solutions of the (2 + 1)-dimensional two-component
LSRI system (2) are obtained in terms of Lamé polynomials of 
orders one and two. Similar solutions of (1 + 1)-dimensional two-
component LSRI system (1) are discussed in Section 3. Finally, con-
clusions are drawn in the last section.

2. Jacobi elliptic function solutions of the (2 + 1)-dimensional 
two-component LSRI system

We start with the (2 + 1)-dimensional LSRI system (2). To con-
struct the Jacobi elliptic solutions of Eq. (2a) we choose the travel-
ing wave ansatz

S j(x, y, t) = f j
[
β(x − vt − wy + δ0)

]
e−i(ω jt+ν j y−k j x+δ j),

j = 1,2. (3)

Here f j are real functions of x, y and t; β, δ0 and δ1,2 are real 
constants, ω j is the frequency of the jth SW component, k j is the 
wave number, v is the velocity, w and ν j are real parameters. Note 
that both the SWs are traveling with the same velocity. Inserting 
the above ansatz (3) into Eq. (2b), we obtain the LW component as

L = − 2

v

(
c1|S1|2 + c2|S2|2

)
. (4)

Following this, by substituting the ansatz (3) into (2) and also by 
using (4), we get a set of complex equations. On equating the real 
and imaginary parts, we respectively obtain

d2 f j

du2
+

[
δ(ω j + ε jν j) − k2

j

β2
− 2δ

vβ2

(
c1 f 2

1 + c2 f 2
2

)]
f j = 0,

j = 1,2, (5a)

v + ε j w = 2δk j, (5b)

where u = β(x − vt − wy + δ0). At a first look it might seem that 
(5) is similar to the coupled nonlinear Schrödinger system given 
in [19]. But a careful analysis shows that they are essentially dif-
ferent. This is due to the presence of the LW component L. In fact, 
here the solution parameters β and the velocity v explicitly appear 
before the non-linear term (c1 f 2

1 + c2 f 2
2 ). This makes the present 

system different from that of [19]. Particularly, this v determines 
the nature of the solution, i.e., whether the solution is singular or 
not, as will be shown later. Thus the results presented here are 
distinct from those given in [19], though the elliptic function solu-
tions take standard Lamé function profiles as will be demonstrated 
below. These solutions can be viewed as velocity locked solutions.

Next, we assume the Lamé function ansatz for f j , that is,

f j = ρ jψ
(l)
j , l, j = 1,2, (6)

where ψ(l)
j can be anyone of the three first order Lamé polynomi-

als for l = 1 and for l = 2, it can be any one of the five second 
order Lamé polynomials and satisfy the Lamé equation [27],

d2ψ
(l)
j

du2
+ [

λ
(l)
j − l(l + 1)m sn2(u,m)

]
ψ

(l)
j = 0, (7)

where m (0 ≤ m ≤ 1) is the modulus parameter of the Jacobi ellip-
tic function sn(u, m), l (= 1, 2) represents the order of the Lamé 
polynomial ψ(l)

j and λ(l)
j is the corresponding eigenvalue. Thus we 

will have two distinct families of solutions corresponding to the 
Lamé polynomials of order 1 (l = 1) and of order 2 (l = 2). First, we 
present and discuss periodic solutions in terms of Lamé polynomi-
als of order one and then we present the second order solutions.

2.1. Solutions in terms of Lamé polynomials of order 1

The two-component LSRI system (2) admits seven distinct peri-
odic solutions in terms of Lamé polynomials of order 1. These first 
order solutions of Eq. (2) corresponding to l = 1 can be expressed 
in terms of Jacobi elliptic functions [28]. We classify these solu-
tions as similar, mixed and superposed elliptic solutions. By similar 
we mean same kind of standard elliptic function profile for both 
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