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In this study, we recorded spike trains from brain cortical neurons of several behavioral rats in vivo by 
using multi-electrode recordings. An NFN was constructed in each trial, obtaining a total of 150 NFNs 
in this study. The topological characteristics of NFNs were analyzed by using the two most important 
characteristics of complex networks, namely, small-world structure and community structure. We found 
that the small-world properties exist in different NFNs constructed in this study. Modular function Q
was used to determine the existence of community structure in NFNs, through which we found that 
community-structure characteristics, which are related to recorded spike train data sets, are more evident 
in the Y-maze task than in the DM-GM task. Our results can also be used to analyze further the 
relationship between small-world characteristics and the cognitive behavioral responses of rats.

© 2014 Published by Elsevier B.V.

1. Introduction

In recent years, complex networks based on the graph theory 
have been widely used to analyze the structural and functional 
properties of brain networks [1–3]. In brain networks, several brain 
areas or neurons are regarded as nodes, whereas structural or 
functional correlation connections are regarded as edges. Ignoring 
the shape, size, and other physical characteristics of the brain helps 
identify and analyze the likeness or difference of brain networks 
[4]. Edges are referred to as axons or fiber tracts in brain networks 
identified as structural networks. By contrast, edges are referred to
as cross correlations of signals from brain areas or from single neu-
rons in brain networks are identified as functional networks. Statis-
tical methods can be used to calculate these correlations. Complex-
network analysis methods can be used to analyze the topological 
characteristics of brain networks, particularly the characteristics of 
functional networks. Many studies have shown that the poten-
tial functional characteristics of functional networks are similar 
to the structural topology characteristics of brain networks [5,6]. 
Brain-network analysis methods have become the main methods 
in studying the brain system and brain diseases [7–9].

Several complex network measures, which include the cluster-
ing coefficient and the shortest path length, have been used to 
analyze the brain functional network. Many studies have focused 
on small-world network structures, which are known for their 
highly efficient information transmission with low transmission 

cost [10–12]. The results of these studies show that small-world 
structure changes are closely related to brain development and 
brain disorders [13,14]. These studies were mainly focused on the 
macroscopic level of connectivity and on the functional networks 
derived from a set of voxels from functional magnetic resonance 
imaging (fMRI) or from independent components of electroen-
cephalogram (EEG) data. However, using small-world properties 
is only the first step in understanding the complex structure of 
the brain. Complex network approaches allow the quantification of 
other topological properties, such as modularity [15]. These mea-
sures have also been used in brain fMRI networks. Researchers 
have recently discovered brain network modules [16,17]. For in-
stance, the studies partitioned pharmacological MRI and resting 
state fMRI networks into meaningful communities of closely in-
terconnected voxels by using a widely used community-structure 
partitioning algorithm [18,19]. The cerebral cortex is a network 
composed of a large number of neurons. Studying the connection 
structures between neurons is important for understanding brain 
functions. However, few studies have tried to obtain the microlevel 
connectivity properties of neuronal functional networks (NFNs) on 
the level of individual neurons [20,21].

With the development of multiple electrode recording tech-
nology, spike trains from hundreds of individual neurons can 
be recorded simultaneously [22]. Research regarding neuron pop-
ulations has proved useful in understanding population coding 
in neuronal populations. Population coding theory considers the 
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Fig. 1. Description of the processes of two different behavioral tasks. (A) Box of the DM-GM task. (B) Box of the Y-maze task.

information carried by the neuron population, instead of consid-
ering the firing rate of single neurons. New models need to be 
developed to understand the relationships in populations of inter-
acting neurons. Topological analysis of the characteristics of NFNs 
can specifically answer questions of how the brain works. Sev-
eral studies have analyzed the small-world characteristics of NFNs 
and have shown that NFNs have small-world properties [20,21]. In 
this study, we recorded the spike trains of cortical neurons of rats 
by using the multiple electrode recording technique. The rats per-
formed two cognitive tasks. In the first task, the rats were trained 
to implement the doing more and getting more behavioral task 
(DM-GM, Fig. 1(A)). In the second task, the rats were trained to 
implement the Y-maze behavioral task (Y-maze, Fig. 1(B)). Four ex-
perimental data sets were selected from two different behavioral 
tasks. Each data set contains multiple trials for each rat. A single 
NFN was generated for each trial by using individual neurons as 
nodes and the correlations between the spike trains of the neurons 
as edges. A fully weighted and completed network was constructed 
for each trial. Each weighted network was converted into a bi-
nary matrix by retaining several edges with important correlations. 
We studied the two most important characteristics in complex 
networks: small-world network and community structure. Results 
show that small-world properties exist in different NFNs which 
were constructed based on the recorded neurons in this study. By 
using the modular function Q proposed by Newman and Girvan 
[15], we found that community structure characteristics depend 
on recorded data sets. Compared with the DM-GM cognitive task, 
community structure characteristics are observed in the data sets 
from the Y-maze cognitive task. NFNs that have community struc-
ture characteristics can be divided into different sub-structures on 
the basis of the modular function Q .

2. Materials and methods

2.1. Experiment data

All studies were approved by the Institutional Animal Care and 
Use Committee of the Fudan University. In this study, spike train 
data sets were selected from two different cognitive behavioral 
tasks. In the DM-GM task, the experimental training box was a 
rectangular box with bottom, but without cover (70 cm × 25 cm ×
25 cm). The rats were moderately deprived of water. Rats are given 
water for reward when these rats run to the bottom of the box. 
The longer the rats stay in the top of the rectangular box, the more 
water they are given to drink when they returned to the bottom 
of the box. The training box in the Y-maze task is a Y-shaped box 
with bottom, but without cover. The three arms of the box have 
angles of 120◦ to each other. The rats were trained to move alter-
nately to the left or right arm to receive juice or water as reward.

Multiple microelectrode arrays (cerebus-128 multi-channel, 
Blackrock Microsystems, United States) were chronically implanted 
in different cortical areas, such as in the anterior cingulated cor-
tex (ACC) of the DM-GM task and in the prefrontal cortex (PFC) of 

Table 1
Four spike train data sets of different cognitive tasks from multi-electrode record-
ings.

Task Data sets Neurons Trials

DM-GM Data 1 34 50
Data 2 25 50

Y-maze Data 3 20 25
Data 4 23 25

the Y-maze task, in male and adulated rats. In the brain, ACC is re-
sponsible for the decision function and PFC is responsible for the 
memory function. DM-GM task is a decision-making memory task 
and Y-maze task is a working memory task. Consequently, we se-
lected the ACC and PFC as recorded rat brain regions for this study. 
Signals were recorded only when the signal-to-noise ratio is larger 
than three. We sorted spikes on the basis of a template-match 
algorithm to identify spikes of single neurons when the signals ex-
ceed a threshold. A multiple neuron acquisition processor (Plexon) 
was used to acquire and distinguish activity from single neurons. 
Spike trains of neurons are composed of a sequence of spikes. All 
experiments were performed in accordance with animal protocols 
approved by the United States National Institutes of Health (NIH).

We recorded a large population of neurons in rats, which per-
formed two different behavioral tasks. We used four data sets of 
spike trains for analysis, recorded from four different rats. Two 
rats performed the DM-GM task and other two rats performed 
the Y-maze task. A total of 102 neurons were observed. Each data 
set of DM-GM task contained 50 trials, whereas each data set of 
Y-maze contained 25 trials. Each data set had different number of 
neurons. The number of neurons for each data set varied from 20 
to 34, in which the maximum number of neurons is 34, the mini-
mum is 20, and the mean is 25.5 (Table 1).

2.2. Functional network construction

Calculating the correlations between the spike trains of neuron 
pairs is the first step in constructing NFNs. Many linear meth-
ods, such as Pearson correlation coefficient and cross-correlation, 
were used as a measure of functional connectivity among brain 
networks [23,24]. Many correlation calculation methods require 
spike trains to be binned in small time windows, thence calcu-
lating correlations between pairs of neurons based on these bins. 
This method has some problems. The resulting neuronal functional 
networks depend on bin size. Networks generated would vary ac-
cording to bin parameters. The choice of parameter is very difficult. 
There is no unified standard. Here, we account for this effect by 
directly observing each set of neuronal spike trains as a time se-
ries independent of time window. Using the function “corrcoef” in 
the Matlab toolbox, we applied a generalized correlation coefficient 
calculation to derive the correlation matrix between multiple neu-
rons. Let X = {x1, x2, . . . , xi . . . , xn}, xi represent the spike train of 
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