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We study the effective manipulation of the Andreev bound states (ABS), zero mode Majorana fermion 
and Josephson current (JC) in a superconductor–normal–superconductor junction on the surface of a 
topological insulator in unexplored regime of parameters. It is found that the energy of the ABS changes 
dramatically with the phase difference between both superconductors (SCs) in a certain range of the 
incident angle of quasiparticles. It is shown that the velocity of Majorana fermion and the JC can be 
effectively tuned in a wide range of the chemical potential in the normal region (μN ) and the separation 
width (L) of the two SCs. In addition, we expose that the critical JC and its product with the normal 
resistance are, respectively, a quarter and the same to those in a graphene-based Josephson junction. The 
dependence of the critical JC on the chemical potential in the superconducting region is not monotonous: 
it increases (decreases) for small (large) μN .

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Topological insulators (TIs) are proposed as new quantum states 
of matter, which have a bulk band gap and gapless edge states 
or metallic surface states due to the time reversal symmetry and 
spin–orbit coupling [1–6]. The topologically protected metallic sur-
face states in TIs have been observed by surface-sensitive exper-
imental techniques, such as angle-resolved photoemission spec-
troscopy (ARPES) [7–9] and scanning tunneling microscopy (STM) 
[10,11]. Furthermore, a negligible contribution to transport from 
bulk carriers [12] and near 100% contribution from the surface 
states of TIs [13] have been identified in experiments. Recently, 
Fu and Kane [14] have proposed that a gapped surface state of 
a strong TI induced by the proximity effect of an s-wave su-
perconductor resembles a spinless px + ip y superconductor. This 
px + ip y superconducting state was predicted to host Majorana 
fermion excitations, which are expected to have potential appli-
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cations in quantum information [15]. The prediction by Fu and 
Kane spurred much interest on the superconductivity of topologi-
cal surface states. The superconducting energy-gap induced by the 
proximity effect and supercurrent in a topological insulator Joseph-
son junction (TIJJ) has been observed in experiments [16–23]. How 
to manipulate and detect the Majorana fermions were also ad-
dressed theoretically in the TIJJ and a superconductor–TI–magnet 
junction [14,24–26].

It is also interesting to address the Andreev bound states and 
the current–phase relation in the TIJJ system [27–32]. The Bo-
goliubov quasiparticle corresponding to the zero energy Andreev 
bound state is Majorana fermion in the TIJJ [14], when the phase 
difference between two superconductors is π in the TIJJ. Since the 
chemical potential μ of the surface states can be tuned by an ex-
ternal gate voltage or a chemical doping in experiments, the chem-
ical potential μN in normal surface region (we mean the region of 
TI without covering a superconductor) and μS in superconduct-
ing region can be different in general. The current–phase relation 
of a Josephson junction has been studied under the condition of 
μS = 2Δ and μN varying from 0 to 4Δ in Ref. [28], where Δ

is the superconducting energy gap. A nearly flat Andreev bound 
state spectrum is concluded in the case of a fixed phase differ-
ence π , μN = μS ∼ 17Δ and L ∼ ξ in Ref. [29], where L is the 
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Fig. 1. (Color online.) Schematic top-view of layout of a superconductor–normal–
superconductor junction on the surface of a topological insulator shown in (a) and 
(c), where SC indicates the s-wave superconductor. rAi , i = 1, 2, 3, 4 correspond the 
processes shown in (b) and (d). (a) and (b) show the Andreev retroreflection for 
ε < μN , (c) and (d) correspond to the specular Andreev reflection ε > μN , (b) and 
(d) depict the excitation spectrum of normal topological surface states, where the 
red (green) lines indicate electron (hole) excitations, and the solid (dashed) lines 
indicate conduction (valence) bands.

junction width and ξ is the superconducting coherence length. 
Since μS � Δ is the most common experimental situation in or-
dinary superconductor [26,30,33], it is more reasonable to set a 
large μS , which is very far away from the Dirac point. This case 
was studied in Ref. [30] under an assumption of very large fixed 
μN (accounted from the Dirac point), and the 4π periodic Andreev 
bound states was anticipated. Moreover, the anomalous supercur-
rent in the TIJJ was studied in the presence of an applied magnetic 
field [32].

In this paper, we study the Andreev bound states and Josephson 
current in a superconductor–normal–superconductor (SNS) junc-
tion on the surface of a topological insulator, under the conditions 
of μS � Δ, and L is shorter than ξ , where μN varies from zero 
to the values much larger than Δ. In this parameter regime, the 
behavior of this system is still not clear.

2. Model and formalism

The structure of a SNS junction on topological insulator surface 
is schematically displayed in Fig. 1(a) and (c). The bulk s-wave su-
perconductor interacts with the surface electrons of TI by the prox-
imity effect, and the superconductivity is induced in the topologi-
cal surface states [14,16–26]. The interfaces between superconduc-
tor (SC) and normal segment are parallel to y direction. The nor-
mal segment is located between x = −L/2 and x = L/2. With this 
setup, in the Nambu notation Ψ = ((ψ↑, ψ↓), (ψ†

↓, −ψ
†
↑))T , where 

ψ↑(↓) is the electron field operator with spin up ↑ (down ↓), the 
SNS junction can be described by the Bogoliubov–de Gennes equa-
tion [14,25,26],(

υF σ̂ · p̂ − μ(r) Δ̂

Δ̂∗ μ(r) − υF σ̂ · p̂

)
ψ(x, y) = εψ(x, y), (1)

with Pauli matrices σ̂ = (σ̂x, σ̂y, σ̂z), the in-plane electron mo-
mentum p̂ = (p̂x, p̂ y, 0), the Fermi velocity υF and the chemical 
potential μ(r) which is measured with respect to the Dirac point. 
ψ(x, y) is the wave function, and ε is the excitation energy. The 
piecewise chemical potential μ(r) is μN in the middle normal re-
gion, and μS in left and right superconducting regions. μN and μS

could be tuned independently [16,34,35]. Δ̂ = Δeiϕ is the super-
conducting pair potential, and Δ is the superconducting energy-
gap. The phase ϕ of superconductor is φ1 and φ2 in the left and 
right superconducting regions, respectively. Here we presume the 
distance L between the two interfaces shorter than the supercon-
ducting coherence length ξ = h̄υF /Δ [33,36].

Solving Eq. (1), under the condition of μS � Δ, we obtain the 
wave function in the left superconducting region as

ψls = (
aΨaeikx0x + bΨbe−ikx0x)eK x+iky y, (2)

where Ψa = (ei(φ1−γ −α), ei(φ1−α), e−iγ , 1)T , Ψb = (−ei(φ1+γ +α),

ei(φ1+α), −eiγ , 1)T , kx0 =
√

(μS/h̄υF )2 − k2
y , K = μS Δ sin α

h̄2υ2
F kx0

, α =
arccos(ε/Δ) for ε < Δ, the incident angle of the quasiparticles 
γ = arcsin(h̄υF ky/μs), a and b are the amplitudes of coherent 
superpositions of electron and hole excitations, which decay expo-
nentially as x → −∞.

The wave function in the middle normal region ψn depends on 
μN , where μN ≥ 0 is assumed. If 0 ≤ ε < μN , we have

ψn = [
cΨceikxx + dΨde−ikxx + f Ψ f eikx1x + gΨge−ikx1x]eiky y, (3)

where Ψc = (e−iθ , 1, 0, 0)T , Ψd = (−eiθ , 1, 0, 0)T , Ψ f = (0, 0,

e−iθ ′
, 1)T , Ψg = (0, 0, −eiθ ′

, 1)T , θ = arcsin h̄υF ky
μN +ε and kx = μN +ε

h̄υF
×

cos θ for electrons in the case of | h̄υF ky
μN +ε | ≤ 1. When | h̄υF ky

μN +ε | > 1, θ =
sign(γ )(π

2 − i arccosh | h̄υF ky
μN +ε |), and kx = i μN +ε

h̄υF
sinh(arccosh | h̄υF ky

μN +ε |). 

θ ′ = arcsin h̄υF ky
μN −ε , and kx1 = μN −ε

h̄υF
cos θ ′ for holes in the case of 

| h̄υF ky
μN −ε | ≤ 1. When | h̄υF ky

μN −ε | > 1, θ = sign(γ )(π
2 − i arccosh | h̄υF ky

μN −ε |), 

and kx = i μN −ε
h̄υF

sinh(arccosh | h̄υF ky
μN −ε |). c and d are the amplitudes 

of the right and left moving electrons, and f and g are the am-
plitudes of the left and right moving holes. The incident electron 
is reflected as a hole through retro-reflection (normal Andreev re-
flection) as presented in Figs. 1(a) and 1(b) [37].

If ε = μN �= 0 [38,39], we obtain

ψn = [
cΨceikxx + dΨde−ikxx + f Λ4e−ky x + gΛ3eky x]eiky y, (4)

where Λ3 = (0, 0, 1, 0)T , Λ4 = (0, 0, 0, 1)T , θ , kx , c and d are de-
fined as above, f and g are the amplitudes of wave functions for 
the right and left moving holes, which are evanescent wave func-
tions.

If ε = μN = 0 [38,39], the wave function is

ψn = (
cΛ2e−ky x + dΛ1eky x + f Λ4e−ky x + gΛ3eky x)eiky y, (5)

where Λ1 = (1, 0, 0, 0)T , Λ2 = (0, 1, 0, 0)T , c and d are the ampli-
tudes of the right and left decaying wave of electrons, f and g are 
the amplitudes of the right and left decaying wave of holes.

If ε > μN , we get

ψn = (
cΨceikxx + dΨde−ikxx + f Ψ ∗

g eikx1x + gΨ ∗
f e−ikx1x)eiky y, (6)

where θ (in Ψc and Ψd), c, and d are defined as above, but θ ′ (in 
Ψ f and Ψg ) is given by θ ′ = arcsin h̄υF ky

ε−μN
, and kx1 = ε−μN

h̄υF
cos θ ′

for holes, when | h̄υF ky
ε−μN

| ≤ 1. When | h̄υF ky
ε−μN

| > 1, θ ′ = sign (γ )(π
2 −

i arccosh | h̄υF ky
ε−μN

|), and kx1 = i ε−μN
h̄υF

sinh(arccosh | h̄υF ky
ε−μN

|). f and g
are the amplitudes of the right and left moving holes. The inci-
dent electron is reflected as a hole through the specular reflection 
as presented in Figs. 1(c) and 1(d) [33].

The wave function in the right superconductor is:

ψrs = (
hΨhe−ikx0x + jΨ je

ikx0x)e−K x+iky y, (7)
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