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a  b  s  t  r  a  c  t

Multivariate  linear  regression  aided  by a  successive  projections  algorithm  (SPA-MLR)  was applied  in
the evaluation  of anodic  stripping  voltammetry  data  obtained  in the  simultaneous  determination  of
metals  under  conditions  where  there  were  significant  complications  due  to  interference  processes  such
as  the  formation  of intermetallic  compounds  and  overlapping  peaks.  Using  simulated  data,  modeled  from
complex  interactions  experimentally  observed  in  samples  containing  Cu  and  Zn,  as  well  as  Co  and  Zn,
it was  demonstrated  that SPA-MLR  selected  variables  that allow  chemical  interpretation.  This  feature
was  used  to  make  inferences  about  the  underlying  electrochemical  processes  during  the  simultaneous
determination  of  four  metals  (Cu, Pb,  Cd, and  Co)  in  a concentration  range  where  all  responses  were
complicated  by  interference  processes  (10-100  ng  mL−1).  Additionally,  the  analytical  performances  of
MLR  models  for  quantitative  predictions  were  excellent  despite  the  complexity  of  the  system  under
study.

©  2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

In electroanalytical chemistry, the traditional approach is the
use of univariate models, i.e., calibration curves constructed from
a single characteristic of the sample. In voltammetry, for example,
the intensity of the peak current is the most commonly used vari-
able. A different approach called multivariate modeling, which is
less sensitive to the presence of interfering substances, uses more
than one variable simultaneously. This is equivalent, for exam-
ple, to construct a calibration model with the current intensity
measured at various potentials in the voltammogram. Multivariate
linear regression (MLR) is a multivariate natural expansion of uni-
variate linear regression and is the simplest procedure to perform a
multivariate calibration. However, this technique is not efficient if
there is significant collinearity in the data matrix (as for voltammet-
ric data), and if the number of variables is greater than the number
of samples. The most common way to avoid this problem is the
use of latent variables or latent structures methods. These methods
use linear combinations of the original variables as new variables.
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Commonly, a small number of orthogonal or almost orthogo-
nal latent variables can be obtained and used for multivariate
calibration.

The selection of predictor variables prior to multivariate regres-
sion is a practice that can provide significant improvement in the
prediction results when compared to the use of full data (spec-
tra or voltammogram), mainly by discarding variables not related
to the analytical response and which only incorporate noise into
the regression model [1–3]. Another feature that has been high-
lighted as an advantage of variable selection is preservation of the
original variables domain when the calibration is based on MLR.
Consequently, it is easy to propose the physical interpretation of
mathematical models, in contrast to what is obtained with methods
based on latent structures such as partial least squares (PLS), and
principal component regression (PCR). In practice, this advantage
has not been greatly explored mainly due to focus on the predictive
ability of the models and their comparison with different methods
[4]. Additionally, there is little demand for the physical interpreta-
tion of variables obtained using spectroscopy techniques because
the important spectral ranges are commonly known [5].

Voltammetric measurements have been associated with mul-
tivariate calibration to provide simultaneous determinations in a
multicomponent system [6–15]. Although this is a growing trend,
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there are fewer successful cases described in the literature com-
pared with spectrometric data. An important difference between
these two techniques is that, in voltammetric results, interference
processes can introduce new voltammetric peaks such as those
related to intermetallic compounds in the simultaneous determi-
nation of metallic ions by anodic stripping voltammetry (ASV).
Since this kind of interference is related to the metal concentrations
themselves, new signals must be included in the calibration model,
which necessarily becomes a multivariate model. It is, however,
very difficult to obtain information about the signals of inter-
metallic species. For this reason, many researchers prefer to build
multivariate calibration models with all voltammograms, using
latent structure methods and including many signals without cor-
relation with the metal concentration [16].

Wang [17], in his famous book, asserts that interference pro-
cesses in ASV usually occur when metallic thin films are used as the
working electrode. These substrates offer many advantages over
bulk metal electrodes such as an improved scope for different cell
configurations and for chemical modification of their surface, lower
cost (requires only minute quantities of the metal to assemble the
film), a larger surface-to-volume ratio, and mechanically stability
(in comparison with mercury drops, for example) [18]. However,
due to the larger surface-to-volume ratio, metallic films are more
susceptible to the formation of intermetallic compounds. In this
case, the common approaches for eliminating or correcting such
interference include removing the interfering response by adding
a masking substance [19,20] or the single standard addition method
[21–23].

In this work, we intended to evaluate MLR  coupled to vari-
able selection performed by the successive projections algorithm
[24] (SPA-MLR) in multivariate calibration for voltammetric data
using simulated voltammograms and real measurements in the
simultaneous determination of metals by anodic stripping voltam-
metry. The focus was on observing if variable selection could
reveal variables apparently not related to a specific analyte,
denoting unknown electrochemical phenomena such as cou-
pled reactions, the formation of intermetallic compounds, matrix
effects, etc. It was expected that this guided soft modeling
semi-empirical approach would provide a very useful qualitative
interpretation of the analyzed electrochemical system in addition
to quantitative predictions in the same way as hard modeling
[25,26].

First, simulated voltammograms were employed in order to
explore and discuss the performance of SPA-MLR under a variety of
conditions of intermetallic compound formation and peak overlap.
Two scenarios were studied. The first one involved the simultane-
ous determination of Cu and Zn considering the formation of an
intermetallic compound CuZn. Pb was also introduced in this sim-
ulation in order to evaluate whether the selection algorithm would
select variables not related to the analytes, once we considered
that there is no interaction of Pb with Cu and Zn. It is important
to point out that Cu-Pb intermetallic effects have been reported in
ASV [27,28]. However, no intermetallic formation was considered
in the present simulations. The second scenario involved the simul-
taneous determination of Cu, Zn and Co, considering the formation
of the intermetallic compounds CuZn and CoZn.

SPA-MLR was also submitted to the analysis of a real system
containing five metals that interact to varying degrees in a single
sample. In the present work, the simultaneous DPASV analysis of
Cu, Co, Pb, Cd, and Zn in water samples with a mercury thin-film
electrode (MTFE) was investigated. All analytes were studied in the
range from 10 to 100 ng mL−1. Thus, several sorts of interactions
are expected such as intermetallic compounds between Cu and Zn,
Cu and Cd, and between Cu and Co, to name a few. They result in
current-concentration relationships that are difficult to represent
using a simple univariate regression model.

2. SPA-MLR background

The SPA is a variable selection algorithm that uses sets of cali-
bration and validation data containing instrumental responses (X)
and parameter values measured by a reference method (y). It ini-
tially defines the XCAL matrix (KC × J), where rows correspond to
KC samples of the calibration set and columns correspond to J vari-
ables, which in the context of this work are the intensities of current
at each potential of the full voltammogram. From a XCAL column
matrix, arbitrarily chosen and named x0, SPA determines which of
the other columns has the largest projection in the subspace S0
orthogonal to x0. This column is named x1 and can be interpreted
as containing the largest amount of information not included in
x0. In the next iteration, the SPA uses x1 as the new reference col-
umn, and proceeds as above to select x2. The algorithm follows with
projections until a certain number of variables potential minimally
collinear with each other is selected.

The maximum number of variables that can be selected is KC,
since the dimension of the column space of XCAL is reduced by
one after each iteration, i.e., one degree of freedom is removed.
Therefore, after KC iterations, all column vectors of XCAL have been
projected on the origin of the space and XCAL will become a matrix
of null rank. Several variable chains are built upon the selection
of each one of J variables as the initialization vector x0 in succes-
sive projections, and varying the length N of the chains, typically
between 2 and KC. The best variable chain is selected by building a
MLR  model for each chain, and validated with a validation samples
set constituted by new samples that did not enter the calibration
set. The chain of choice is one that corresponds to the MLR  model
that has the lowest root mean square error of validation.

The next stage of SPA-MLR is necessary because the construc-
tion of the variable chains takes place solely based on minimizing
the collinearity between the variables and does not take into
account the correlation between each variable and the response,
i.e., concentration of the analyte contained in the vector y. Thus, a
procedure that eliminates the variables has been selected but not
correlate with the concentrations is performed in order to obtain a
simpler model.

3. Experimental

3.1. Simulated data

Data simulation was  based on the approach used by Stromberg
and Gorodovykh [29], who  modeled the Cu-Zn system in which the
intermetallic compound is apparently insoluble. Eq. 1 shows the
expression used for simulating responses characteristic of redox
species in a thin-layer [30]:
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In this equation, n is the number of electrons involved in the
reaction, F is the Faraday constant, � is the scan rate, V is the volume
of the solution and R the gas constant, E is the applied potential
and E◦ is the formal potential of the species. Then, it is possible to
calculate the current, i, for a concentration C of the analyte, which in
anodic stripping voltammetry is represented by the concentration
of the mercury electrode–CHg–given by eq. 2.

CHg = �C (2)

In eq. 2, � is the accumulation coefficient and is dependent on
deposition time, mass transport of the analyte to the electrode
surface, concentration of the analyte in the bulk solution, C, and
electrode area. As stated previously, the behavior of the Cu-Zn sys-
tem has been characterized and can be related to the concentrations
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