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It is argued that Dirichlet is the physical boundary condition at the origin for the one-dimensional hy-
drogen atom: The three-dimensional hydrogen atom is confined to a tube, and the limit as the diameter
of the tube cross section goes to zero is taken. It is shown that the energy expectations are finite only in
case of Dirichlet boundary condition.
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When a quantum Hamiltonian have more than one self-adjoint
extension, it is natural to ask which of such extensions is physically
reasonable (if any) among the admissible ones. Sometimes, physi-
cists take one self-adjoint extension for granted, usually guided by
their expectations about a particular boundary condition they sus-
pect will occur. But one must think of effective ways to justify each
choice, and be aware that different boundary conditions will reflect
different physical conditions and dynamics.

According to quantum mechanics, the allowable boundary con-
ditions are those for which the corresponding Hamiltonians are
self-adjoint. In some cases the initial Hamiltonian operator has
just one self-adjoint extension, and so the modeling is clear; a
prominent example is the three-dimensional (3D) hydrogen atom
Hamiltonian (0 �= κ ∈ R)

H H = −� − κ

|x| , dom H H = H2(
R

3),
which is the unique self-adjoint extension of the operator with the
same action but domain C∞

0 (R3) (see details in [1]); H2 is a usual
Sobolev space of functions in L2 whose first and second derivatives
are also square integrable. This is in fact the textbook Hamiltonian
of the hydrogen atom or, more precisely, of the electron motion
under a Coulomb potential. However, the same model in one di-
mension (1D) has infinitely many self-adjoint extensions [2,3], and
one reason is that in 1D one is forced to start with the domain
C∞

0 (R \ {0}) (smooth functions of compact support that vanish in
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a neighborhood of the origin), and so appropriate boundary condi-
tions at the origin are necessary in order to get self-adjoint exten-
sions. Denote such initial 1D Hamiltonian by Ḣ , that is,

Ḣ = − d2

dx2
− κ

|x| , dom Ḣ = C∞
0

(
R \ {0}). (1)

We will refer to this operator, and its self-adjoint extensions as
well, as the “one-dimensional hydrogen atom” (despite this name
might refer to potentials obtained through fundamental solutions
of the Laplace equation; see Section 5 in [3]).

In Ref. [3] there is a description of all self-adjoint extensions
of Ḣ ; here we describe in detail only the Dirichlet extension Ḣ D ,
since it will be the relevant one to this work. Shortly, Ḣ D is the
extension of Ḣ whose function in its domain vanish at the origin;
precisely, Ḣ D has the same action as Ḣ but with domain

dom Ḣ D =
{
φ ∈ L2(

R \ {0}): φ,φ′ ∈ AC
(
R \ {0}),

(
−φ′′ − κ

|x|φ
)

∈ L2(R), φ
(
0+) = 0 = φ

(
0−)}

,

with φ′ indicating the derivative of φ and AC(R \ {0}) denoting the
set of absolutely continuous functions on the subset R \ {0}.

Since the publication of a work by Loudon [4] of 1959, there
were interesting discussions about this 1D hydrogen atom, with
different approaches and interpretations; one of the main points
was the right choice of boundary conditions at the origin, includ-
ing whether the origin is permeable or not (that is, if the electron
could travel from one side of the origin to the other side [5–8,3]).
Due to the Coulomb singularity (very strong in 1D, but mild in
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3D), the vanishing of the wave functions at the origin in 1D, the
so-called Dirichlet boundary condition, has been assumed in most
works (see, for instance, [4,9–13], references therein), so that the
origin becomes impermeable. It is worth mentioning that, besides
Dirichlet, there are other boundary conditions that turn the origin
impermeable [3].

A result in [14] indicates that the Dirichlet condition is the rel-
evant one for such 1D hydrogen model; it was shown that if the
Coulomb potential is softened at the singularity in the form

− d2

dx2
− κ

|x| + a
, a > 0,

then the Dirichlet boundary condition emerges in the limit a → 0.
It is the main goal of this work to present another argument, one
we consider more physically appealing, to exclude boundary con-
ditions different from Dirichlet; we will consider a dimension re-
duction from 3D to 1D in such model. Before going into details, let
us briefly recall some facts of the history of the one-dimensional
hydrogen atom.

Apparently this model was first considered by Vrkljan [15] in
1928, but Loudon’s work [4] motivated a long controversial discus-
sion through a series of publications by different authors. Loudon
stated that the 1D hydrogen atom was twofold degenerate with
even and odd eigenfunctions for each eigenvalue, except for the
ground state with an infinite binding energy. Since it is expected
that 1D systems should have no degenerate eigenvalues, the dou-
ble degeneracy was justified in terms of the severe 1D Coulomb
singularity. Andrews [5] questioned the existence of a ground state
with infinite binding energy, and later on Haines and Roberts [16]
have analyzed Loudon’s arguments, found even wave functions
with continuous eigenvalues, which were complementary to some
odd functions; however, Andrews [17] disapproved these results
by not accepting the continuous eigenvalues. Gomes and Zimer-
man [18] argued that the even states with finite energy should be
excluded. Spector and Lee [19] presented a relativistic treatment
of this model with the advantage of excluding the ground state in-
finite binding energy; recently, careful studies of the bound-state
energies for Klein–Gordon particles in a 1D cutoff Coulombian po-
tential have been reported [20,21]. The classification of all bound-
ary conditions at the origin compatible with quantum mechanics,
as well as the question of permeability of the origin, are discussed
in [2,3]. A particular self-adjoint extension was mathematically se-
lected in [6] by employing tools of distribution theory, but this
“selection of the physical boundary condition” was criticized in
[22] by arguing that such a selection cannot be performed by
mathematical considerations of self-adjoint extensions alone; see
the response to the critics in [23]. Other works that have discussed
this model include [24–32], and this list is far from comprehensive.

Although at first glance the one-dimensional hydrogen atom
seems to be a question of purely academic interest, one should
note that such model has been used as approximations in theo-
retical and numerical studies of more realistic 3D models [33–35],
particularly describing atoms in very strong magnetic fields [36];
in the description of electrons hovering above superfluids [37,12,
38]; in investigations of the threshold ionization of atoms under
very intense laser fields [39]; in applications to condensed mat-
ter [40,37]; electrons trapped in one-dimensional hydrogenic levels
have been suggested as a possible device for quantum comput-
ing [41]; it was noted that the electronic distribution of atoms, in
excited states under time-periodically electric fields, can be mod-
elled by the one-dimensional hydrogen atom [42,43]. Furthermore,
some experimental evidences for the 1D hydrogen atom [12,44]
have been reported and, recently, in [11] the authors present a dis-
cussion against the assertion that the 1D Coulomb potential “does
not properly exist.”

The above remarks reinforce the motivation for arguments to-
wards a selection of physical self-adjoint extensions of this model,
and this is our main goal in this work. We propose a mathemat-
ical mechanism that is not restricted to the sole classification of
self-adjoint extensions: we discuss a way of getting the 1D model
from the familiar 3D hydrogen atom while keeping track of the
behaviour of the energy expectations. In the first step we assume
that the Coulombian center of force is kept fixed at the origin, but
we restrict the electron motion to a tube Ωε whose cross section
has diameter 2ε; the second step is to take the limit ε → 0, so that
the tube reduces to a straight line (the x-axis), and we shall argue
that only the Dirichlet boundary condition gives rise to finite (i.e.,
different from both ±∞) energy expectations during the confining
process. The energy expectations, described by means of quadratic
forms of the relevant Hamiltonian operators, will be our physical
guides to the selection of the physically reasonable boundary con-
dition.

Consider an electron, under the influence of a Coulomb poten-
tial with center of force located at the origin, and restricted to a
tube with cross section ∅ �= S ⊂ R

2 along the x-axis. S is an open,
connected, bounded subset of R

2. As usual, denote by i, j, k the
unit vectors pointing towards the positive directions of the axes
x, y1 = y, y2 = z, respectively. Assume that the point with coordi-
nates y1 = 0 = y2 belongs to S (in case S is an open disk we get
the usual infinitely long cylinder). For each ε > 0, denote

f ε(x, y1, y2) = xi + ε y1j(x) + ε y2k(x),

which defines a tube given by

Ωε := {
(x, y, z) ∈ R

3: (x, y, z) = f ε(x, y1, y2), (y1, y2) ∈ S
}
.

Our initial Hilbert space is L2(Ωε), but it is necessary to restrict
the calculation of the energy to suitable subspaces. For instance,
some derivatives are required and we also assume that the func-
tions vanish at the tube border ∂Ωε , as a way to restrict the
electron motion to the tube.

Instead of the usual expression for the energy expectation

〈
ψ,

(
−� − κ

|(x, y)|
)

ψ

〉
, (2)

we shall use another one that requires a weaker condition on the
wave function and reduces to (2) in case ψ is smooth, that is, we
define the energy expectation for functions in H1

0(Ω
ε) (recall that

the subscript “0” in H1
0(Ωε) indicates that the elements of this

space vanish at ∂Ωε ) by writing

E ε(ψ) :=
∫

Ωε

(
|∇ψ |2 − κ

|ψ |2
|(x, y)|

)
dx dy, ψ ∈ H1

0

(
Ωε

)
,

so that only the first derivatives of ψ are required to belong to
L2(Ωε) (that is the meaning of the superscript “1” in H1

0); ∇ is the
usual gradient in Cartesian coordinates (x, y) = (x, y1, y2), dy =
dy1 dy2. The gradient in the cross section variables y = (y1, y2)

will be denoted by ∇⊥ , and the prime ′ will indicate derivative
with respect to the 1D variable x.

After a properly regularized E ε(ψ) (regularizations are unavoid-
able since there is a reduction of dimension of the system [45,46]),
we will show that the condition of the energy to be finite in the
singular limit ε → 0, that is, when the tube approaches a straight
line, requires Dirichlet boundary condition at the origin in the cor-
responding 1D model.

When the tube is compressed, there are divergent energies due
to terms (at least) of the form λ0/ε

2 related to transverse oscil-
lations in the tube, where 0 < λ0 is the least eigenvalue of the
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