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We present a mechanism for quantum gates where the qubits are encoded in the population distribution
of two-component ultracold atoms trapped in a species-selective triple-well potential. The gate operation
is a specific application of a different design for an atomtronics transistor where inter-species interaction
is used to control transport, and can be realized with either individual atoms or aggregates like Bose–
Einstein condensates (BEC). We demonstrate the operational principle with a static external potential,
and show feasible implementation with a smooth dynamical potential.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

As research in ultracold atoms shifts more towards practical ap-
plications, two of the most promising areas are that of quantum
computation [1] and atomtronics or electronics with trapped ul-
tracold atoms [2–4]. Whereas classical computation is intimately
tied to electronics, quantum computation in the context of ultra-
cold atoms has so far evolved independently of the relatively new
field of atomtronics. Taking a cue from classical computers, it is
likely that analogs of standard electronic components like diodes
and transistors can be valuable in quantum computation as well. In
this paper we propose a different design for an atomtronics tran-
sistor which can also be used to implement a two-qubit quantum
gate.

Our proposal has several distinguishing features: (a) qubit en-
coding in the spatial coordinates of particles allows implemen-
tation with single particle as well as with multi-particle entities
such as BEC, (b) a system-independent principle that offers broad
choices for physical realization, (c) operation does not require ma-
nipulation of internal states, and (d) easily optimizable for high
fidelity and speed.

In our proposed gate mechanism, qubits are directly encoded in
and read out from the spatial distribution of atoms. Spatial mode
encoding has been primarily used in optical qubits, in the context
of continuous variable quantum computation [5], or in dual-rail
schemes [6]. Certain clever proposals for realizing phase gates in
double-well potentials [7–9] have also employed vibrational modes
of trapped atoms. However, the gate outcome is contained in the
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phase of the states and readout was shown to require intermedi-
ate encoding on atomic internal states [10]. In contrast, we encode
qubits in the population distribution of atoms in a triple-well po-
tential, and readout simply involves determining the presence or
absence of atoms in specific wells, possible even for single atoms
by direct imaging methods [11].

Likewise, a simpler operational principle underlies our atom-
tronics transistor, where the atom transport is directly controlled
by interspecies interaction. Existing designs are based on manipu-
lating resonant coupling of lattice sites by adjusting the chemical
potential or external bias fields [2,3,12]; or on manipulating atomic
internal states to transport holes [13], or spin [14].

2. Quantum gate operation, static case

We consider two independently controlled orthogonal triple
wells that can be switched between two ‘T-shaped’ configurations,
shown in Fig. 1(a, b), containing two mutually-interacting species,
each free to move only along one direction. Single qubits are en-
coded in the spatial degrees of freedom of the two species, with
|0〉 and |1〉 corresponding to localizations in the respective extreme
wells. In any given operation cycle the motion of one species is
kept frozen by deep potentials, so only one spatial dimension (1D)
needs to be considered at a time. Without loss of generality further we
refer to the active species as A and the passive as B as in Fig. 1(a). Along
the active direction we label the wells left, central, right, with effec-
tive qubit definitions [Fig. 1(d, e)]: Qubit A is in state |0〉 or |1〉 if
species A is localized in the left or right well respectively; Qubit B
is in state |0〉 or |1〉 when species B is absent or present in the
well that overlaps with the central well of A. A two-qubit CNOT
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Fig. 1. (a)–(b) Interchangeable gate configurations where role of A and B can be
swapped; (c) Transistor configuration connected to reservoirs. (d)–(e) Effective qubit
definitions in a specific cycle; (f) CNOT quantum gate operation.

gate can be then designed [Fig. 1(f)] such that after a set time T ,
qubit A is negated if qubit B is in |1〉, but is unchanged if qubit B
is in |0〉. Notably, such a configuration allows for simple scalability
since the roles (‘control’ or ‘controlled’) of the two species can be
switched in different cycles.

We first consider a static triple-well potential to describe the
gate operation principle, which involves the three lowest eigen-
states φ0, φ1 and φ2 for species A in the triple-well, with eigenen-
ergies E0 < E1 < E2. The term “static” distinguishes the case in
which the potential does not change in time from the dynamic
case studied in Section 5. The potential is symmetric about the
central well minimum [Fig. 2], so φ1 has its node there while φ0
and φ2 have anti-nodes. Therefore, when species B is present in
the central well, the repulsive A–B interaction V AB will shift up
the energies E0 and E2, but hardly affect E1. A class of potentials
exists where the presence of atom B will raise E0 and E2 by the
same amount, thus leaving �E2 = E2 − E0 unchanged while de-
creasing �E1 = E1 − E0.

Species A is prepared in a state |ψA(t = 0)〉 localized in one
of the two extreme wells. Even though we choose this state to
be simply a Gaussian with minimized energy, the projection on
the three lowest eigenstates is almost complete. The initial phase
relations among the eigenstates, shown in Fig. 2(a, b), are such
that φ0(0) and φ2(0) add up constructively with φ1(0) in one ex-
treme well and destructively in the other. If present, |ψB(0)〉 is
a minimum energy Gaussian in the tight selective potential for
species B, overlapping with the central well of the active poten-
tial for atom A. To ensure perfect execution of the gate, one should
be able to adjust �E1 and �E2 both with and without atom B.
This requires four independent parameters such as separation and
height of the barriers, depth of the side wells relative to the middle
well and the interaction strength V AB . By simple reparametrization
[15], we can find a configuration such that with species B ab-
sent, �E2 = 2 × �E1, and with species B present �E B

2 = �E2 and
�E B

2 = 4 × �E B
1 , as seen in Fig. 2. Since all the energy separations

are integer multiples of a common energy unit, in both cases (with
and without B) species A will undergo periodic dynamics with a
revival of the initial state (in the initially occupied extreme well) at

Fig. 2. Static potential: Species B absent (left), present (right): (a, b) The three lowest eigenstates and (c, d) corresponding eigenenergies of species A in the triple-well. The
dotted lines show the potential from Eq. (3), which generally matches a lattice potential (solid line in (c), (d)) created with three harmonics. With B absent, �E2 = 2 × �E1

but with B present, �E B
2 = 4 × �E B

1 . (e, f) The single-well occupation versus time for species A, with species B absent/present.
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