
Physics Letters A 372 (2008) 4768–4774

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Permutation entropy of fractional Brownian motion and fractional Gaussian noise

L. Zunino a,b,c,∗, D.G. Pérez d, M.T. Martín e, M. Garavaglia a,c, A. Plastino e, O.A. Rosso f,g

a Centro de Investigaciones Ópticas, C.C. 124 Correo Central, 1900 La Plata, Argentina
b Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), 1900 La Plata, Argentina
c Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina
d Instituto de Física, Pontificia Universidad Católica de Valparaíso (PUCV), 23-40025 Valparaíso, Chile
e Instituto de Física (IFLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Argentina’s National Council (CCT-CONICET), C.C. 727, 1900 La Plata, Argentina
f Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, School of Electrical Engineering and Computer Science, The University of Newcastle,
University Drive, Callaghan NSW 2308, Australia
g Chaos & Biology Group, Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria,
1428 Ciudad de Buenos Aires, Argentina

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 September 2007
Received in revised form 14 April 2008
Accepted 6 May 2008
Available online 17 May 2008
Communicated by A.R. Bishop

PACS:
02.50.-r
02.50.Ey
05.45.Tp
89.70.Cf

Keywords:
Permutation entropy
Fractional Brownian motion
Fractional Gaussian noise

We have worked out theoretical curves for the permutation entropy of the fractional Brownian motion
and fractional Gaussian noise by using the Bandt and Shiha [C. Bandt, F. Shiha, J. Time Ser. Anal. 28 (2007)
646] theoretical predictions for their corresponding relative frequencies. Comparisons with numerical
simulations show an excellent agreement. Furthermore, the entropy-gap in the transition between these
processes, observed previously via numerical results, has been here theoretically validated. Also, we have
analyzed the behaviour of the permutation entropy of the fractional Gaussian noise for different time
delays.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Entropic studies almost always assume that the underlying
probability distribution is given. This is not at all the case if one is
dealing with an input signal regarded as a time series. Part of the
concomitant analysis involves extracting the probability distribu-
tion from the data and, rarely, a univocal procedure imposes itself.
One recent and successful method is that introduced by Bandt and
Pompe [1]. The Bandt and Pompe method (BPM) for evaluating
the probability distribution is based on the details of the attrac-
tor reconstruction procedure. It is the only one among those in
popular use that takes into account the temporal structure of the
time series generated by the physical process under study. A no-
table result from the Bandt and Pompe approach is a notorious
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improvement in the performance of the information quantifiers
obtained using the probability distribution generated by their al-
gorithm [2–8]. Of course, one must assume with the BPM that the
system fulfills a very weak stationary condition and that enough
data are available for a correct attractor reconstruction. The per-
mutation entropy is just the celebrated Shannon entropic measure
evaluated using the BPM to extract the associated probability dis-
tribution.

We are interested in the characterization of stochastic processes
through this quantifier. In particular, we have chosen the fractional
Brownian motion and its noise, the fractional Gaussian noise, for
the analysis. The former is a ubiquitous non-stationary model for
many physical phenomena which have empirical spectra of power-
law type, 1/ f α , with 1 < α < 3. Thus, the characterization of these
processes has become of interest in different and heterogeneous
scientific fields, like physics, biology, finance, telecommunications
and music [9–12]. It should be stressed that both processes, fBm
and fGn, were jointly introduced in the seminal work of Mandel-
brot and Van Ness published in 1968 [13]. Moreover, many authors
have made use of the physical connection between fBm and fGn
for modelling and synthesis purposes [14–17].
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In a previous effort [18], the normalized permutation entropy of
the fractional Gaussian noise and fractional Brownian motion was
numerically computed. A clear entropy-gap was observed in the
transition between these two stochastic processes, that does not
depend upon neither the length of the associated time series nor
the embedding dimension. Curiously enough, this is a new result.
Previous approaches that employ probability distributions based on
a wavelet description fail to detect such gap [19].

In this Letter we have worked out theoretical curves for the
above-mentioned normalized permutation entropy of the fractional
Gaussian noise and fractional Brownian motion. To such an end
we have used theoretical results published recently by Bandt and
Shiha [20]. This allows the previously observed entropy-gap to be
now conclusively classified as a real phenomenon, not a numerical
artifact. Also, we have analyzed the behaviour of the normalized
permutation entropy of the fractional Gaussian noise for different
time delays. Finally, the curves we worked out using the Bandt and
Shiha results were compared with those obtained from numerical
simulations of the two stochastic processes under analysis.

The reminder of the Letter is organized as follows. In Section 2
we describe the Bandt and Pompe probability distribution and its
associated permutation entropy. In Section 3 we give a brief review
of the two stochastic processes under analysis: the fractional Gaus-
sian noise and fractional Brownian motion. The theoretical curves
and the comparison with their numerical simulations counterparts
are presented in Section 4. Discussions and conclusions are the
subject of the last section. Finally, in Appendix A we give some
details concerning the Bandt and Shiha theoretical results that we
use throughout the Letter.

2. The Bandt and Pompe approach

Given a time series {xt : t = 1, . . . , M}, an embedding dimension
D > 1, and a time delay τ , consider the ordinal patterns of order
D [1,2,21] generated by

s �→ (xs−(D−1)τ , xs−(D−2)τ , . . . , xs−τ , xs). (1)

To each time s we are assigning a D-dimensional vector that re-
sults from the evaluation of the time series at times s, s−τ , . . . , s−
(D − 1)τ . Clearly, the greater the D value, the more information
about the past is incorporated into the ensuing vectors. By the
ordinal pattern of order D related to the time s we mean the per-
mutation π = (r0, r1, . . . , rD−1) of (0,1, . . . , D − 1) defined by

xs−rD−1τ � xs−rD−2τ � · · · � xs−r1τ � xs−r0τ . (2)

In order to get a unique result we consider that ri < ri−1 if xs−riτ =
xs−ri−1τ . Thus, for all the D! possible permutations πi of order D ,
the probability distribution P = {p(πi), i = 1, . . . , D!} is given by
the relative frequency

p(πi) = �{s | s � 1 + (D − 1)τ , s has ordinal pattern πi}
M − (D − 1)τ

, (3)

where � is the cardinality of the set—roughly speaking, the num-
ber of elements in it. To determine p(πi) exactly an infinite time
series should be considered, taking M → ∞ in the above formula.
This limit exists with probability 1 when the underlying stochastic
process fulfills a very weak stationarity condition: for k � D , the
probability for xt < xt+k should not depend on t [1].

The advantages of the BPM reside in (a) its simplicity, (b) its ro-
bustness, and (c) its invariance with respect to nonlinear monoto-
nous transformations. Also, this method provides an extremely fast
computational algorithm. It can be applied to any type of time
series (regular, chaotic, noisy, or experimental) [1]. Remark that
for the applicability of this approach we need not to assume that
the time series under analysis is representative of a low dimen-
sional dynamical system. Of course, the embedding dimension D

plays an important role for the evaluation of the appropriate prob-
ability distribution, since D determines the number of accessible
states, D!, and tells us about the necessary length M of the time
series needed in order to work with a reliable statistics. In partic-
ular, Bandt and Pompe suggest for practical purposes to work with
3 � D � 7. Concerning this last point in all calculations reported
here the condition M � D! is satisfied [6].

The normalized permutation entropy is just the normalized
Shannon entropy associated to the probability distribution P =
{p(πi), i = 1, . . . , D!}

HS [P ] = S[P ]/Smax =
[
−

D!∑
i=1

p(πi) ln
(

p(πi)
)]

/Smax, (4)

where Smax = ln D!, (0 �HS � 1)—S stands for Shannon entropy.

3. Fractional Brownian motion and fractional Gaussian noise

Fractional Brownian motion (fBm) is the only family of pro-
cesses which is Gaussian, self-similar,1 and endowed with station-
ary increments—see Ref. [19] and references therein. The normal-
ized family of these Gaussian processes, {B H (t), t > 0}, is the one
with B H (0) = 0 almost surely, i.e., with probability 1, E[B H (t)] = 0
(zero mean), and covariance given by

E
[

B H (t1)B H (t2)
] = 1

2

(
t2H

1 + t2H
2 − |t1 − t2|2H)

, (5)

for t1, t2 ∈ R. Here E[·] refers to the average computed with
a Gaussian probability density. The power exponent 0 < H < 1
is commonly known as the Hurst parameter or Hurst exponent.
These processes exhibit memory for any Hurst parameter except
for H = 1/2 as one realizes from Eq. (5). The H = 1/2-case cor-
responds to classical Brownian motion and successive motion in-
crements are as likely to have the same sign as the opposite,
there is no correlation among them. Thus, Hurst’s parameter de-
fines two distinct regions in the interval (0,1). When H > 1/2,
consecutive increments tend to have the same sign so that these
processes are persistent. For H < 1/2, on the other hand, consecu-
tive increments are more likely to have opposite signs, thus these
processes are anti-persistent. Fractional Brownian motions are con-
tinuous but non-differentiable processes (in the classical sense). As
a non-stationary process, they do not possess a spectrum defined
in the usual sense; however, it is possible to define a generalized
power spectrum of the form

ΦB H ( f ) ∝ 1

| f |α , (6)

with the exponent α = 2H + 1, 1 < α < 3.
The fractional Gaussian noise is the process {W H (t), t > 0} ob-

tained from the fBm increments (for discrete time), i.e.,

W H (t) = B H (t + 1) − B H (t). (7)

This is a stationary Gaussian process with mean zero and covari-
ance given by

ρ(k) = E
[
W H (t)W H (t + k)

]
= 1

2

[
(k + 1)2H − 2k2H + |k − 1|2H ]

, k > 0. (8)

1 Self-similar stochastic processes are invariant in distribution under suitable scal-
ing of time and space. Formally, a (stochastic) process X(t) is self-similar with
index H if, for any c > 0,

X(t)
d= cH X

(
c−1t

)
,

where
d= is equality in distribution.
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