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Adaptive method is an effective way to synchronize different hyperchaotic systems. This work investigates
the chaos synchronization between different hyperchaotic systems with fully unknown parameters, i.e.,
the synchronizations between Lorenz–Stenflo (LS) system and a novel dynamical system named CYQY
system, and between LS system and hyperchaotic Chen system. Based on the Lyapunov stability theory,
two new adaptive controllers with corresponding parameter update laws are designed such that the
different hyperchaotic systems can be synchronized asymptotically. Numerical simulations are presented
to demonstrate the effectiveness of the proposed adaptive controllers.
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1. Introduction

Since Rössler firstly introduced a hyperchaotic dynamical sys-
tem [1], many hyperchaotic systems have been proposed and stud-
ied in the last decade, for example, the hyperchaotic Chen system
[2,3], a new hyperchaotic Lorenz system [4], the hyperchaotic Lü
system [5], the hyperchaotic LS system and the hyperchaotic Qi
system [6], just to name a few. Hyperchaotic system has more
than one positive Lyapunov exponent which generates more com-
plex dynamics than the low-dimensional chaotic system. Therefore,
hyperchaotic system has much wider application than the low-
dimensional chaotic system. For example, the adoption of hyper-
chaotic system has been proposed for secure communication and
the presence of more than one positive Lyapunov exponent clearly
improves the security of the communication scheme [7].

Until now, a variety of approaches have been proposed for
the synchronizations of low-dimensional chaotic systems such as
the linear and nonlinear feedback synchronization method [8–11],
adaptive synchronization method [12–16], time-delay feedback
method [17], backstepping design method [18,19] and sliding mode
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method [20], impulsive synchronization method [21,22], etc. For-
tunately, many existing methods of synchronizing low-dimensional
chaotic systems can be generalized to synchronize hyperchaotic
systems such as the adaptive controller method [23–26], projective
method [27,28], feedback method [29,30], backstepping nonlinear
method [31], lag synchronization method [32], impulsive method
[33,34], function cascade method [35] and so on. Among these
synchronization methods, the adaptive control is proved to be an
effective one to achieve the synchronization between different hy-
perchaotic systems with uncertain parameters.

Recently, the synchronizations of hyperchaotic systems by adap-
tive controllers have attracted much attention from nonlinear area.
Some researchers investigated the synchronizations between iden-
tical hyperchaotic systems, for example, the synchronization of hy-
perchaotic Rössler systems [36,37], hyperchaotic Lü systems [38],
hyperchaotic Chen systems [39], hyperchaotic Liu system [40], etc.
At the same time, the synchronizations between different hyper-
chaotic systems have also been considered, such as the synchro-
nizations between generalized Henon–Heiles system and hyper-
chaotic Chen system [27], between hyperchaotic Chen system and
second-harmonic generation (SHG) system [41], between hyper-
chaotic Lorenz system and hyperchaotic Liu system [42], between
hyperchaotic Chen system and a new hyperchaotic system [42],
between hyperchaotic Lorenz system and hyperchaotic Lü system
[43] and others [44,45]. Differs from these studies, the reduced-
order adaptive synchronization between generalized Lorenz system
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(fourth order) and Lü system (third order), between Rössler hy-
perchaotic system (fourth order) and Rössler system (third order)
have been studied in Ref. [46]. As we all know, the synchronization
between different hyperchaotic systems is very important in engi-
neering application because they have different complex dynamics
behaviors. Contributing to this line of literature, this work focuses
on the synchronization between different hyperchaotic systems.
However, differs from the existing works, this work aims at the
chaos synchronization between hyperchaotic LS system and hyper-
chaotic CYQY system, between LS system and hyperchaotic Chen
system with fully uncertain parameters. Based on the Lyapunov
stability theory, two new adaptive synchronization controllers with
corresponding parameter update laws are designed such that the
LS system and the hyperchaotic CYQY system, the LS system and
the hyperchaotic Chen system can be synchronized globally and
effectively.

The rest of the Letter is organized as follows. Section 2 briefly
describes the LS system, hyperchaotic CYQY system and hyper-
chaotic Chen system, respectively. Section 3 presents a novel adap-
tive synchronization controller with corresponding parameter up-
date laws to synchronize LS system and hyperchaotic CYQY system
whose effectiveness are verified by some numerical simulations in
Section 4. Section 5 proposes another adaptive controller for the
synchronization between LS system and hyperchaotic Chen system
and Section 6 gives some numerical simulations. A conclusion is
given in the end.

2. Systems description

Hyperchaotic Lorenz–Stenflo (LS) system is described as [47]
⎧⎪⎨
⎪⎩

ẋ = α(y − x) + γ w,

ẏ = x(r − z) − y,

ż = xy − βz,
ẇ = −x − αw,

(1)

which was formulated by Stenflo from a low-frequency short-
wavelength gravity wave equation. In Eq. (1), x, y, z and w are
state variables and r(> 0), α(> 0), γ (> 0), β(> 0) are the re-
lated parameters named Rayleigh number, Prandtl number, rota-
tion number and geometric parameter, respectively. System (1)
is generated from the originally three-dimensional Lorenz chaotic
system by introducing a new control parameter γ and a state vari-
able w which describes the flow rotation. When α = 1.0, β = 0.7,
γ = 1.5 and r = 26.0, system (1) exhibits hyperchaotic behaviors
(Fig. 1(a)). Some dynamical behaviors have been studied for LS sys-
tem including the familiar period-doubling route to chaos [48], an
extension of the chaotic scenario [49], the phase synchronization
and adaptive synchronization between two LS systems [50], the
reduced-order adaptive synchronization between LS system and Lü
system [46], the active synchronization [6] and backstepping syn-
chronization between LS system and Qi system [51].

Recently, based on the famous Lorenz system, Chen et al. intro-
duced a novel hyperchaotic system, named CYQY system which is
given by the following equations [52]
⎧⎪⎨
⎪⎩

ẋ = l(y − x) + kyz,
ẏ = nx − jxz + y + w,

ż = xy − mz,
ẇ = −λy,

(2)

where l, m, n, j, k, λ are constant parameters and x, y, z, w are
state variables. This system can generate complex dynamics behav-
iors including chaos, Hopf bifurcation, period-doubling bifurcation,
sink and so on. When l = 35, m = 4.9, n = 25, j = 5, k = 35,
λ = 100, system (2) can exhibit a complex hyperchaotic attrac-
tor (Fig. 1(b)). Moreover, system (2) is symmetric with respect to
the z-axis and is dissipative when a + b − 1 > 0. In addition, this
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Fig. 1. Hyperchaotic attractors: (a) hyperchaotic LS system in (y, z, w) space;
(b) Hyperchaotic CYQY system in (y, z, w) space; (c) Hyperchaotic Chen system in
(y, z, w) space.

system has only one unstable zero equilibrium, which is a saddle
point [52].

Hyperchaotic Chen system is described as [4,39]
⎧⎪⎨
⎪⎩

ẋ = a(y − x) + w,

ẏ = dx − xz + cy,

ż = xy − bz,
ẇ = yz + hw,

(3)

where x, y, z and w are state variables and a, b, c, d and h are
real constant parameters. When a = 35, b = 3, c = 12, d = 7,
0 � h � 0.085, system (3) is chaotic; when a = 35, b = 3, c = 12,
d = 7, 0.085 � h � 0.798, system (3) exhibits hyperchaotic behav-
ior (Fig. 1(c)); when a = 35, b = 3, c = 12, d = 7, 0.798 � h � 0.9,
system (3) is periodic. Some dynamics behavior of hyperchaotic
Chen system have been investigated including the control [3], the
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