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We derive a geometric phase using the quantum kinematic approach within the complex quantum
Hamilton–Jacobi formalism. The single valuedness of the wave function implies that the geometric phase
along an arbitrary path in the complex plane must be equal to an integer multiple of 2π . The nonzero
geometric phase indicates that we travel along the path through the branch cut of the phase function
from one Riemann sheet to another.
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1. Introduction

The concept of quantum geometric phase has attracted consider-
able attention in a wide range of areas of physics. Berry pointed
out that a quantum system can obtain a geometric phase when it
evolves adiabatically along a closed path in the parameter space
of the Hamiltonian [1,2]. After Berry’s publication, several studies
were devoted to the removal of the restrictions on the evolution
of a quantum system. The geometric phase was generalized to
nonadiabatic cyclic evolutions in the projective Hilbert space [3].
Moreover, the evolution of the quantum system need be neither
unitary nor cyclic [4]. In addition, Mukunda and Simon developed
the theory of the geometric phase from the quantum kinematic
approach, and showed that the geometric phase is a natural con-
sequence of quantum kinematics [5].

As a variant of Bohmian mechanics [6–11], the complex quan-
tum trajectory method based on the quantum Hamilton–Jacobi for-
malism [12,13] has been developed not only to provide insightful
understanding of quantum phenomena but also to provide a useful
approach in computational applications. As an analytical approach,
complex quantum trajectories determined from the analytical form
of the wave function have been analyzed for several stationary and
nonstationary problems [14–19]. In addition, quantum interference
demonstrated by the head-on collision of two Gaussian wave pack-
ets leads to the formation of quantum caves, and this method
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provides a unified description of interference as well as an elegant
method to define the lifetime for interference features [20–22]. As
a synthetic approach, the derivative propagation method [23] has
also been used to obtain approximate complex quantum trajecto-
ries and the wave function for wave-packet scattering problems
[24–29].

The geometric phase in Bohmian mechanics has been explored
in several studies [30–38], but the geometric phase has not been
investigated within the complex quantum Hamilton–Jacobi formal-
ism. Therefore, the purpose of the current study is to analyze the
geometric phase in the complex quantum trajectory method us-
ing the quantum kinematic approach of Mukunda and Simon, and
we transfer the concept of geometric phase to an individual com-
plex quantum trajectory. Focusing on one-dimensional problems
extended to the complex plane, we derive a reparametrization and
gauge invariant geometric phase associated with an arbitrary open
or closed path, which is not necessarily a quantum trajectory. The
geometric phase consists of the total phase measuring the phase
change at the endpoints of the path and the dynamical phase aris-
ing from the phase change locally accumulated along the path.
In addition, we derive the rate equations describing the rate of
change in the phase and amplitude of the wave function along a
path in the complex plane. The single valuedness of the complex-
extended wave function implies that the geometric phase along a
path must be equal to an integer multiple of 2π . The nonzero ge-
ometric phase indicates that we travel through the branch cut of
the phase function from one Riemann sheet to another along the
path. For stationary states, quantum vortices exhibiting the quan-
tized circulation integral can be regarded as a manifestation of the
geometric phase.
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This Letter is organized as follows. We begin by reviewing the
complex quantum trajectory method in Section 2. In Section 3, we
derive a reparametrization and gauge invariant geometric phase
using the quantum kinematic approach and the rate equations
for the phase and amplitude of the wave function. In Section 4,
relevant properties for this geometric phase are discussed. In Sec-
tion 5, a nonstationary state is used as an example to demon-
strate those concepts developed in the previous sections. Finally,
we make some comments and conclude with a discussion about
future research.

2. Complex quantum trajectory method

In the complex quantum Hamilton–Jacobi formalism [12,13,18],
the wave function analytically extended to complex space is ex-
pressed by

Ψ (z, t) = exp

[
i

h̄
S(z, t)

]
, (1)

where S(z, t) is the complex action and time remains real val-
ued. Substituting this expression into the complex-extended time-
dependent Schrödinger equation, we obtain the complex-valued
quantum Hamilton–Jacobi equation (QHJE) in complex space

−∂ S

∂t
= 1

2m

(
∂ S

∂z

)2

+ V (z) + h̄

2mi

∂2 S

∂z2
. (2)

Complex quantum trajectories are defined by the guidance equa-
tion

m
dz

dt
= p(z, t) = ∂ S(z, t)

∂z
, (3)

where p(z, t) is the quantum momentum function (QMF). The
terms on the right side of Eq. (2) correspond to the kinetic en-
ergy, the classical potential, and the complex quantum potential
given by

Q (z, t) = h̄

2mi

∂2 S

∂z2
. (4)

Through Eq. (1), we can express the QMF in terms of the wave
function by

p(z, t) = h̄

i

1

Ψ (z, t)

∂Ψ (z, t)

∂z
. (5)

From Eq. (3), the wave function determines the dynamics of com-
plex quantum trajectories through the QMF. It has been pointed
out that the trajectory dynamics is influenced by stagnation
points and poles of the QMF corresponding to those points where
∂Ψ (z, t)/∂z = 0 and nodes of Ψ (z, t), respectively [18–21,39,40].

3. Geometric phase in complex space

3.1. Quantum kinematic approach to the geometric phase

Using the quantum kinematic approach of Mukunda and Simon
[5], we derive a geometric phase within the complex quantum
Hamilton–Jacobi formalism. For a wave function ψ(z, t), we con-
sider an arbitrary open or closed path z(t) in the complex plane
starting at t = t1 and ending at t = t2, which is not necessar-
ily a quantum trajectory. The time evolution of the wave function
along this path arises from changes both in position and in time,
ψ(t) = ψ(z(t), t), where the parameter t labels the wave func-
tion. Thus, ψ(t) forms a one-dimensional or one-parameter smooth
curve in the complex inner product space, C = {ψ(t), t1 � t � t2}.
The geometric phase is a property of a curve ψ(t) in this space.

From the quantum kinematic approach [5], the geometric phase
associated with this curve C is given by

ϕg = ϕtot − ϕdyn

= arg
[(

ψ(t1),ψ(t2)
)] −

t2∫
t1

Im

[
(ψ(t),dψ(t)/dt)

(ψ(t),ψ(t))

]
dt, (6)

where ϕtot is the total phase, ϕdyn is the dynamical phase, and
the brackets (. , .) denote the inner product of two complex num-
bers. The total phase measures the phase difference between the
endpoints of this curve, and this endpoint relative phase is a
global quantity. However, the dynamical phase measures the phase
change locally accumulated along the curve in the complex inner
product space.

Separating the complex action into its real and imaginary parts,
S(z, t) = u(x, y, t) + iv(x, y, t) where u(x, y, t) and v(x, y, t) are
real valued, we write the wave function in Eq. (1) as

Ψ (z, t) = exp

[
i

h̄
S

]
= exp

[
i

h̄
u − 1

h̄
v

]
. (7)

Since the complex action is analytically extended into the complex
plane, the phase function u(x, y, t) and the amplitude function
v(x, y, t) are continuous and differentiable with respect to x and
y and they can be regarded as differentiable multivariable func-
tions of x, y, and t [41]. Substituting this expression into the first
term in Eq. (6), we obtain the real-valued total phase along an ar-
bitrary path z(t) = x(t) + iy(t),

ϕtot = 1

h̄

[
u
(
x(t2), y(t2), t2

) − u
(
x(t1), y(t1), t1

)]
. (8)

Specifically, the total phase is undefined if ψ(t1) = 0 or ψ(t2) = 0.
On the other hand, to obtain the dynamical phase along a path
z(t), we need to evaluate the time derivative of the wave function
expressed in Eq. (7)

dψ(t)

dt
= e−v/h̄eiu/h̄

(
i

h̄

du

dt
− 1

h̄

dv

dt

)
. (9)

The total time derivative of the wave function gives the change of
the wave function along a path originating from changes in both
position and time. Thus, the real-valued dynamical phase in Eq. (6)
becomes

ϕdyn = 1

h̄

t2∫
t1

du

dt

(
x(t), y(t), t

)
dt. (10)

The expression clearly indicates that the dynamical phase de-
scribes the locally accumulated phase change along the path.
Therefore, the geometric phase along the path in the complex
plane is given by ϕg = ϕtot − ϕdyn .

3.2. Rate equations for the phase and amplitude of the wave function

It is noted from Eq. (10) that we need to derive a rate equation
for the phase function describing the rate of change in u(x, y, t)
along an arbitrary path z(t), which is not necessarily a quantum
trajectory. Taking the total time derivative of the complex action,
we obtain

dS

dt
= ∂ S

∂z

dz

dt
+ ∂ S

∂t
= p

(
dz

dt
− p

m

)
+ L(z, t), (11)

where p = ∂ S/∂z and Eq. (2) have been used and the complex
quantum Lagrangian is given by L(z, t) = p2/2m − (V + Q ). Here,
the grid point velocity (dz/dt) has not been assigned; thus, Eq. (11)
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