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We have exhaustively investigated the classical limit of the semi-classical evolution with reference to a
well-known model that represents the interaction between matter and a given field. In this Letter we
approach this issue by recourse to a new statistical quantifier called the “symbolic transfer entropy”
[T. Schreiber, Phys. Rev. Lett. 85 (2000) 461; M. Staniek, K. Lehnertz, Phys. Rev. Lett. 100 (2008) 158101].
We encounter that the quantum-classical transition gets thereby described as the sign reversal of the

dominating direction of the information flow between classical and quantal variables. This can be
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considered as an evidence of the physical useful of this new statistical quantifier.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The synchronization phenomenon is found in various field of
science, engineering, and social behavior [1]. A particularly im-
portant example is the coupling between dynamical systems, of
general interest since it can be observed in manifold ways. The in-
vestigation of the concomitant interactions addresses, as a major
aspect, the detection and quantification of the strength and di-
rection (or asymmetry) of couplings. In this vein, much work has
been devoted to the problem of assessing directional couplings, in-
cluding information theoretic approaches. One of these treatments
plays a central role here, namely, the one related to the so-called
“transfer entropy” (TE) [2]. The TE quantifies the statistical co-
herence between systems evolving in time and was developed so
as to overcome problems with the standard time delayed mutual
information, that fails to distinguish between information that is
actually exchanged from shared information due to common his-
tory and input signals. In the TE these influences are excluded by
appropriately conditioning pertinent transition probabilities [2], so
that one is able to distinguish effectively driving from responding
elements and to detect asymmetry in the interaction of subsys-
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tems. It has been shown, via a comparative analysis, that the TE
performance is as good as that of other information theoretic mea-
sures [3]. Important works relevant to our present effort have been
reported, among others, by Marschinski and Kantz [4], Hlavackova-
Schindler et al. [5], Palu$ and Vejmelka [6], and Vejmelka and Palu$
[7]. For further details see Section 3.

Important progress was also recently made by Staniek and
Lehnertz in Ref. [8], where they propose to estimate the trans-
fer entropy by using a particular symbolization approach of the
time series under study, the Bandt and Pompe method [9]. This
is the only one symbolization technique among those in popular
use that takes into account the time causality of the system’s dy-
namics. Then, important details concerning the ordinal structure
of the time series can be revealed [10-12]. Staniek and Lehnertz
called this statistical quantifier symbolic TE (STE) and demonstrate
that it is a robust and computationally fast method to quantify the
dominating direction of information flow between time series from
coupled systems. The symbolic transfer entropy is an improvement
of the transfer entropy for real world applications because it is
more robust under the influence of observational noise. Moreover,
a resonant-like behavior is found, i.e. the direction of coupling is
more easily detected in the presence of noise [8]. It is important
to emphasize that for us it is more convenient to use this particu-
lar symbolic approach, which does not in any manner mean that it
should be considered the superior of the different available tech-
niques.

In this work we apply the STE to the classical limit of quantum
mechanics (CLQM) that, contrary to the widespread belief, remains
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an open problem since the problem of the emergence of classical
mechanics from quantum mechanics is by no means fully solved.
In spite of many results on the i — 0 asymptotics, it is not yet
clear how to explain the classical motion of macroscopic bodies
within the standard quantum mechanics. In this Letter we shall
analyze, via the STE, a special case of evolution from quantum to
classical behavior [13,14] in the framework of a well-known semi-
classical model that represents the interaction of matter with a
given field [15,16]. It should be stressed that this model has been
intensively studied by some of the authors of this Letter. Differ-
ent approaches have been considered: 1) dynamical analysis with
tools like a) Poincaré sections, b) distances between curves (mea-
sured with different norms) so as to study the asymptotic classical
limit, c) relative number of chaotic curves, etc. [13,14,17,18] and
I) statistical analysis by considering quantifiers like the entropy
and the statistical complexity. These quantifiers were evaluated in
two different ways, a) by employing the wavelet approach (see
Refs. [19-21] and references therein) and b) the Bandt and Pompe
method (see Refs. [11,22] and references therein). Moreover, the
statistical complexity was computed by recourse to two different
probability space metrics: Euclidean [19] and Jensen-Shannon di-
vergence [20]. The main results obtained in these previous works
are recovered by employing the STE, which enhances the physical
significance of this new quantifier.

2. The CLQM for a special semi-classical model

Quite a bit of quantum insight is to be gained from semi-
classical perspectives. Several methodologies are available (WKB,
Born-Oppenheimer approach, etc.). The model of Refs. [15-17]
considers two interacting systems: one of them classical, the other
quantal. This makes sense whenever the quantum effects of one of
the two systems are negligible in comparison to those of the other
one. Examples can be readily found. We can just mention Bloch
equations [23], two-level systems interacting with an electromag-
netic field within a cavity and Jaynes-Cummings semi-classical
model [24-26], collective nuclear motion [27], etc. Thus, we deal
here with a special bipartite system that represents the zero-th
mode contribution of a strong external field to the production of
charged meson pairs [16,17], whose Hamiltonian reads
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where (i) X and p are quantum operators, (ii) A and P4 classical
canonical conjugate variables, and (iii) w? = wq? + e%A? is an in-
teraction term that introduces nonlinearity, wy being a frequency.
The quantities mg and mg are masses, corresponding to the quan-
tum and classical systems, respectively. As shown in Refs. [13,14],
in dealing with Eq. (1) one faces an autonomous system of nonlin-
ear coupled equations
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where [ = &p + p&. The system of equations (2) follows immedi-
ately from Ehrenfest’s relations [13]. To study the classical limit we
also need to consider the classical counterpart of the Hamiltonian
given by Eq. (1)
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where all the variables are classical. Recourse to Hamilton’s equa-
tions allows one to find the classical version of Egs. (2); see
Ref. [14] for further details. These equations are identical in form
to Egs. (2) after suitable replacement of quantum mean values by
classical variables, i.e., (¥2) = x2, (p?) = p? and (L) = L = 2xp.
The classical limit is obtained by letting the “relative energy”
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where E is the total energy of the system and I is an invariant of
the motion described by the system of equations previously intro-
duced (Egs. (2)), related to the Uncertainty Principle
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A classical computation of I yields I = x>p? — L?/4 = 0. A measure
of the degree of convergence between classical and quantum re-
sults in the limit of Eq. (4) is given by the norm A of the vector
Au=u—1uq [14]

Naw = u —ugl, (6)

where the three components vector u = ((¥2), (p?), (L)) is the
“quantum” part of the solution of the system defined by Egs. (2)
and ug = (x%, p2, L) its classical counterpart.

A detailed study of this model was performed in Refs. [13,14,
17]. The main results of these references, pertinent for our dis-
cussion, can be succinctly detailed as follows: in plotting diverse
dynamical quantities as a function of E, (as it grows from unity
to oo), one finds an abrupt change in the system’s dynamics for a spe-
cial value of E;, to be denoted by E,; = 21.55264. From this value
onwards, the pertinent dynamics starts converging to the classi-
cal one. It is thus possible to assert that E,< provides us with an
indicator of the quantum-classical “border”. The zone

E, < E“ (7

corresponds to the semi-quantal regime investigated in Ref. [17].
This regime, in turn, is characterized by two different sub-zones
[14]. One of them is an almost purely quantal one, in which the
microscopic quantal oscillator is just slightly perturbed by the clas-
sical one, and the other section exhibits a transitional nature. The
border between these two sub-zones can be well characterized by
a relative energy value E,” = 3.3282. A significant feature of this
point resides in the fact that, for E, > E.”, chaos is always found.
The relative number of chaotic orbits (with respect to the total
number of orbits) grows with E; and tends to unity for E, — oo
[14,17].

Thus, as E; grows from E, =1 (the “pure quantum instance”) to
E; — oo (the classical situation), a significant series of morphology
changes is detected, specially in the transition zone (E,P <Er <
E.%). The concomitant orbits exhibit features that are not easily
describable in terms of Eq. (6), which is a global measure of the de-
gree of convergence in amplitude (of the signal). What one needs
instead is a statistical type of characterization involving the notions
of entropy and statistical complexity. As it was mentioned at the
Introduction these quantifiers were evaluated in various ways as,
for instance, by employing the wavelet approach (see Refs. [19-
21] and references therein) or the Bandt and Pompe method (see
Refs. [11,22] and references therein). These two statistical quan-
tifiers are able to adequately identify the properties of the three
zones that cover the quantum-classical evolution (as E, varies).

Additionally, statistical analysis forces our attention towards
another relevant, orbit-dependent E, value within the transition
zone, namely Eﬂ” , located in the E;, interval [6, 8], where the sta-
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