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In this Letter, we study the generalized Ginzburg–Landau (GL) functional near the tricritical temperature,
and obtain the vortex solution of the FFLO state. Furthermore, we investigate the structure of the vortex
and find that the vortices shrink when the Zeeman effect is weaken or temperature is lowered.
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1. Introduction

In 1964 Fulde and Ferrell (FF) [1], Larkin and Ovchinnikov (LO)
[2] predicted an exotic superconducting state with a spatially mod-
ulated order parameter at low temperatures and high fields when
the paramagnetic depairing is significant due to the Zeeman effect
under a magnetic field. The FFLO state was observed in the heavy
fermion superconductor CeCoIn5 in the high magnetic field region
of the superconducting phase diagram [3], which arouse tremen-
dous interest both in experiment and theory. These states have also
been argued to be important to understand ultracold atomic Fermi
gases [4], color superconductivity in high density quark matter
[5] and isospin asymmetric nuclear matter with proton–neutron
paring [6,7]. In these states vortices play an important role (in
CeCoIn5 the FFLO state appears deep within a vortex state [3]
and ultracold atomic Fermi gases can be rotated to create vortices
within a FFLO state [8]). Thus one central issue of these states is
to understand properties of the vortices.

Previous studies indicate that the order parameter in the FFLO
vortex state is, for example, Ψ (�R) = φn(�r ) cos(qz), where ẑ is along
the direction of the magnetic filed, ẑ · �r = 0, φn(�r ) describes the
structure of vortex lattice [9–13]. This solution has spatial nodes
along the z-axis and the vortex lines parallel to the z-axis where
the un-paired component is laid [9]. In this Letter, we study a sin-
gle vortex of the special superconductor state and get the numeri-
cal solution. With the solution we discuss some physical properties
of the state. The Letter is organized as follows. In Section 2 we give
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the formulism of FFLO states. In Section 3 we derive the equation
of motion and discuss the asymptotic behavior of the equation and
give numerical results of vortex in LO state. The discussion of the
FF state and numerical result is presented in Section 4. We fin-
ish in Section 5 with a discussion of our results and present our
conclusions.

2. Generalized GL theory and the equation of motion

We start with the generalized GL theory pioneered by Buzdin
and Kachkachi to describe the FFLO state [10,11,14,15]. The free
energy density is

F = α|Ψ |2 + β|∂Ψ |2 + γ |Ψ |4 + δ
∣∣∂2Ψ

∣∣2 + μ|Ψ |2|∂Ψ |2

+ μ

8

[(
Ψ †)2

(∂Ψ )2 + (Ψ )2(∂Ψ †)2] + ν|Ψ |6 (1)

where the coefficients are
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VF is Fermi velocity, N (0) is electron density of state, and Kn =
2T Re[∑∞

ν=0
1

(ων−ıI)n ], n � 1; I is the “exchanged filed or the mag-
netic field”; ων = (2ν + 1)π T are Matsubara’s frequencies at tem-
perature T . The expression of F describes the dispersion of free
energy between the FFLO state and normal state. Thus F is always

0375-9601/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2010.02.039

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:shangxinle@impcas.ac.cn
http://dx.doi.org/10.1016/j.physleta.2010.02.039


X.L. Shang et al. / Physics Letters A 374 (2010) 1866–1871 1867

negative for FFLO state [16]. In contrast to the standard GL the-
ory, terms with a second order derivative of the order parameter,
(Ψ ′′)2 as well as terms Ψ 2(Ψ ′)2 are added. When the coefficient
β changes its sign, the non-uniform state appears. In the standard
GL functional, β is positive, but it occurs to be a function of the
field which act as Zeeman effect, and goes to zero at (T ∗, I(T ∗))
being negative at T < T ∗ . Negative β means that the modulated
state has lower energy compared with the non-uniform one [16].
We normalize the coefficients in the following way [16].

Ψ = Ψ̃

√
K3

K5
, X = X̃√

10K3
3K5V

2
F

,

F̃ = F
−K5

8
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)3
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−K5
8
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)2
.

Then the free energy per unit volume is

F̃ = 1

Ṽ

∫
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{
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Firstly we choose the simplest exponential order parameter
Ψ̃ = ψ0eıqz for FF state, the free energy reads F̃ = α̃ψ2

0 − 20
9 q2ψ2

0 +
10
9 q4ψ2

0 − 2ψ4
0 + 10

3 q2ψ4
0 + ψ6

0 . It is easy to find three q for the

minimum of F̃ , namely 0, ±[ 5
9 + ( α̃

2 − 29
81 )

1
2 ] 1

2 . The first one is con-
nected to the uniform state which is trivial case. And for FF state
the last two values are equivalent which are called “proper” value.
Without loss of generality, we choose the positive q for the “prop-
er” value in our discussion. Similarly, for LO state Ψ̃ = ψ0 cos (qz),

the proper q is [0.879 − (0.772 − 0.682α̃)
1
2 ] 1

2 .
Next we consider a single vortex in a superconductor along

the z-axis with cylindrical symmetry. The modulation vector of
order parameter is along the z-axis too. Thus the order parame-
ter could be written as: Ψ̃ = ϕ(r)eımθ cos(qz) (for LO state) and
Ψ̃ = ϕ(r)eımθ eıqz (for FF state). m is the winding number of the
vortex, and |ϕ(r)|2 describes the radial distribution of the density.
Without loss of generality, we consider ϕ(r) as positive real func-
tion.

3. Vortex in the LO state

In this section we focus on the vortex in LO state. We derive the
equation of motion of LO state. Then we analyze the solution and
give the numerical result. Following that we consider the structure
of the vortex of LO state.

3.1. The equation of motion in LO state

Substituting Ψ̃ = ϕ(r)eımθ cos(qz) into (2) and integrating z and
θ we find that (for LO state)
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Here we consider an axially symmetric system with a radius r0 and
one period 2π

q in the z-axis and the radial coordinate r has been
normalized. Thus we can obtain the equation of motion of LO state
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There are three parameters α̃,m,q in the equations. m is the
winding number of the vortex. We may call α̃ ‘external field’ cor-
responding to the temperature and Zeeman effect, and it goes from
0.8999 to 1.13333 [16]. q = 2π

Z is the modulation vector along z-
direction. We should stress here that it is q that determines the
natural period Z in order to minimize the free energy [16].

3.2. The asymptotic behavior at the boundary

We use the Thomas–Fermi approximation to analyze the
asymptotic behavior far from the center of the vortex. When r � 1,
we neglect the quantum pressure terms (derivatives with respec-
tive to the coordinates r) in Eq. (4) and easily find the physical
solution of Eq. (4)
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The two parameters α̃ and q determine the convergent value
of ϕ , which decreases when α̃ or q increases. The result of T–F
approximation is shown in Fig. 1. From (a) we know that for fixed
α̃, the scalar reversely increases with q. The proper q is the middle
one which is corresponding to the minimum of F̃ . For one fixed
value of α̃, there is only one proper value of q to minimize the
free energy F̃ . In (b) we show the different α̃ with their proper q,
the scalar decreases with the increasing α̃.

Now we consider the asymptotic behavior of the equation of
motion at r → 0. When r → 0, we assume ϕ(r) = rχ . After substi-
tuting it into Eq. (4), we get the leading order term

(
m4 − 4m2 + 4m2χ + 4χ2 − 2m2χ2 − 4χ3 + χ4)rχ−4. (6)

To avoid singularity at r → 0, we find χ = |m|, or χ = 2+|m|. Thus
we get:

ϕ(r) = c1r|m| + c2r2+|m| when r → 0. (7)

The asymptotic behavior of ϕ at r → 0 is different from the usual
vortices, where ϕ(r) = c1r|m| . They grow more faster near r = 0.
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