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We theoretically investigate optical control of magnetic Feshbach resonance in Bose gases with two
optical fields. The two optical fields couple two ground states through an excited state. Compared
with the usual single-optical scheme, two optical fields can greatly suppress the inelastic loss resulting
from spontaneous emission by the destructive quantum interference. Using the mean field theory, the
analytical formula of the scattering length is obtained. The results show that the scattering length can
be modified in a large range by changing the Rabi frequency or the optical field frequency. The strong
atom–molecule interaction has obvious effect on the scattering length.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Ultracold atoms and molecules have attracted much atten-
tion of researchers due to their application in precision measure-
ment [1], the quantum computation [2], and chemical reaction [3].
Control of atomic interactions has made an explosive progress in
quantum gases for investigating few- and many-body quantum
systems.

The magnetic Feshbach resonance (MFR) provides a useful tool
to control the interaction between atoms in ultracold quantum
gases [4–8]. However, magnetic modulation is limited in current
experiments of MFR to relatively longer time scales and lower spa-
tial resolution. Optical Feshbach resonance (OFR) is expected to be
a new and powerful control with higher spatial and temporal res-
olutions [9]. OFR has been studied in thermal degenerate gases of
Na [10] and 87Rb [11], but for alkali atoms it may suffer from
rapid loss of atoms due to light-induced inelastic collisions. The
loss is characterized by a two-body rate coefficient K2 with an
estimated value of 10−10 cm3 s−1 [12]. Typical density of the or-
der of 1014 cm−3 in experiment results in lifetime of the order
of 100 μs [12], which is too short for many applications. OFRs
in ultracold alkaline–earth atomic collisions may overcome the
loss problem [13]. OFR for control of higher partial wave, such as
p-wave scattering of 171Yb, has been suggested [14] and demon-
strated [15]. The Bose gas 88Sr with a narrow intercombination line
has been studied by OFR, using a laser with frequency tuned away
from resonance [16].
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Recently, the combination of MFR and OFR has aroused a great
interest both in theory and experiment. Bauer et al. demonstrated
that a single-color laser can not only noticeably shift an MFR in
87Rb [12,17], but also induce considerably low rates of particle loss
than an OFR. Wu et al. proposed a way for optical control of MFR
in Fermi gases using two optical fields [18,19]. This dark-state op-
tical method can be used to control the interaction strength near
an MFR, and suppress spontaneous emission by quantum inter-
ference. Deb et al. suggested that quantum interference between
magnetic and optical Feshbach resonances could suppress inelastic
scattering and enhance elastic scattering cross section [20]. Fur-
thermore, this method can be used to manipulate not only the
spherically symmetric s-wave interaction, but also the anisotropic
higher partial-wave interaction.

A many-body approach was applied to describe MFRs by Tim-
mermans et al. [21]. In the present work, this many-body approach
is extended to describe the optical control of MFRs in Bose gas.
Using the mean field theory, the analytical formula of the scatter-
ing length is obtained. The atom–molecule interaction, which has
been not considered in previous studies [12,17–20], is taken into
account and its effects on the scattering length are discussed.

2. Theoretical approach

Fig. 1 illustrates a scheme for a pair of atoms in the hyperfine
state, which undergoes an s-wave collision in the ground electronic
state (open channel). The hyperfine interaction can couple the scat-
tering continuum state |a〉 ⊗ |a〉 of the open channel to a bound
vibrational state |g1〉 in the closed channel. The energy of collid-
ing atomic pair can be modulated close to state |g1〉 by a magnetic
field, resulting in an MFR. Another ground state which is not cou-
pled to the open channel is a certain vibrational state. The optical

0375-9601/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physleta.2013.10.028

http://dx.doi.org/10.1016/j.physleta.2013.10.028
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:shlcong@dlut.edu.cn
http://dx.doi.org/10.1016/j.physleta.2013.10.028
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2013.10.028&domain=pdf


44 Y. Liu et al. / Physics Letters A 378 (2014) 43–47

Fig. 1. A scheme for optical control of a Feshbach resonance with two optical fields.
The two optical fields with frequencies ω1 and ω1 and Rabi frequencies Ω1 and Ω2

couple the ground states |g1〉 and |g2〉 to the excited state |e〉, respectively. α de-
notes the coupling between the incoming atomic pair state |a〉⊗ |a〉 and |g1〉, which
is responsible for a magnetically induced Feshbach resonance.

fields Ω1 and Ω2 couple the ground states |g1〉 and |g2〉 to the ex-
cited electronic state |e〉, respectively. The Hamiltonian of colliding
system is written as [17]

Ĥ =
∫

d3x
∑

j

Ψ̂
†
j (x)H j(x)Ψ̂ j(x)

+ 1

2

∫
d3x

∑
i, j

Ψ̂
†
i (x)Ψ̂

†
j (x)UijΨ̂ j(x)Ψ̂i(x)

+ h̄

∫
d3x1d3x2

[
Ψ̂

†
1 (X12)α(x12)Ψ̂p(x1,x2) + H.c.

] + Ĥint

(1)

where the optical field–system interaction Hamiltonian is given by

Ĥ int = −h̄

∫
d3x

[
cos(ω1t)Ψ̂ †

e (x)Ω1Ψ̂1(x)

+ cos(ω2t)Ψ̂ †
e (x)Ω2Ψ̂2(x) + H.c.

]
. (2)

Here, H j ( j = a,1,2, e) is the single-particle (atom or molecule)

Hamiltonian, Ψ̂ j(x) (Ψ̂ †
j (x)) is the bosonic annihilation (creation)

field operator. The relative coordinate x12 = x1 −x2 and the center-
of-mass coordinate X12 = (x1 + x2)/2. Ψ̂p(x1,x2) = Ψ̂a(x1)Ψ̂a(x2)

denotes the annihilation field operator of an atomic pair. Ui =
Uii = 4π h̄2ai/mi represents the two-body interaction strength be-
tween the same species, and Uij = U ji = 2π h̄2aij/mij (for i �= j)
denote the interaction strengths between different species, where
ai and aij are the corresponding s-wave scattering lengths far away
from Feshbach resonance. m j = m(2 − δaj) is the mass of a parti-
cle in the jth state with δaj being the Kronecker symbol and m
the atomic mass, and mij = mim j/(mi + m j) the reduced mass.
In this paper, the molecule–molecule interactions are neglected.
Only the atom–atom interactions and the interactions between
atom and molecule in the ground molecular states are considered.
α(x12) denotes the atom–molecule coupling relevant to the MFR.
Ω1(2) = 〈e|d|g1(2)〉ε1(2)/h̄ is the Rabi frequency corresponding to
the transition |g1〉 → |e〉 (|g2〉 → |e〉).

If the incoming atoms are slow enough, α(x12) approximates
to a constant α [17]. Ĥ in Eq. (1) is computed by Ĥ = ∫

d3xH(x)

with the Hamiltonian density [21]

H(x) =
∑

j

Ψ̂
†
j (x)H j(x)Ψ̂ j(x) + 1

2
UaΨ̂

†
p(x)Ψ̂p(x)

+ 1

2

∑
j=1,2

Uaj
(
Ψ̂

†
a (x)Ψ̂

†
j (x)Ψ̂ j(x)Ψ̂a(x)

+ Ψ̂
†
j (x)Ψ̂

†
a (x)Ψ̂a(x)Ψ̂ j(x)

) + h̄
[
Ψ̂

†
1 αΨ̂p + H.c.

]
+Hint(x), (3)

where

Hint(x) = −h̄
[
cos(ω1t)Ψ̂ †

e (x)Ω1Ψ̂1(x) + cos(ω2t)Ψ̂ †
e (x)Ω2Ψ̂2(x)

+ H.c.
]
. (4)

The single-particle Hamiltonian containing a kinetic operator and
internal energy E int

j is given by

H j(x) = − h̄2

2m j
∇2 + E int

j (5)

with j = (a,1,2, e). The internal energy E int
j depends nonlinearly

on the magnetic field B . Near the pole of the unshifted Feshbach
resonance B0, this dependence is linear and expressed as

E int
j = −μ j(B − B0) + h̄ωe1δej + h̄ω21δ2 j, (6)

where μ j is magnetic dipole moment. At B = B0, the |a〉 and |g1〉
states are degenerate, and the energies of the |g2〉 and |e〉 states
are h̄ω21 and h̄ωe1, respectively.

We assume that the population in each state is Bose condensed
and can be described by a mean field ψ j(x) = 〈Ψ̂ j(x)〉 for a homo-
geneous system. By taking the expectation value of the Heisen-
berg equation of motion ih̄ dΨ̂ j/dt = [Ψ̂ j, Ĥ] and approximating
the field operators as uncorrelated, one can obtain [21]

i
dψa

dt
= E int

a

h̄
ψa + 1

h̄

∑
j=a,1,2

Uaj|ψ j|2ψa + 2α∗ψ∗
a ψ1, (7a)

i
dψ1

dt
= E int

1

h̄
ψ1 + 1

h̄
Ua1|ψa|2ψ1 + αψ2

a − Ω∗
1 ψe cos(ω1t), (7b)

i
dψ2

dt
= E int

2

h̄
ψ2 + 1

h̄
Ua2|ψa|2ψ2 − Ω∗

2 ψe cos(ω2t), (7c)

i
dψe

dt
= E int

e

h̄
ψe − Ω∗

1 ψ1 cos(ω1t) − Ω∗
2 ψ2 cos(ω2t). (7d)

By taking ψ j = b je−i[(2−δaj)Eint
a /h̄+ω1δej−(ω2−ω1)δ2 j ]t and using

the rotating wave approximation, Eq. (7) can be reduced to

i
dba

dt
= 1

h̄

∑
j=a,1,2

Uaj|b j|2ba + 2α∗b∗
ab1, (8a)

i
db1

dt
= 
1b1 + 1

h̄
Ua1|ba|2b1 + αb2

a − 1

2
Ω∗

1 be, (8b)

i
db2

dt
= 
2b2 + 1

h̄
Ua2|ba|2b2 − 1

2
Ω∗

2 be, (8c)

i
dbe

dt
= −

(

e + iγe

2

)
be − 1

2
Ω1b1 − 1

2
Ω2b2, (8d)

where 
1 = μa1(B − B0)/h̄, the single-photon detuning 
e = ω1 −
μae(B − B0)/h̄ and the two-photon detuning 
2 = (ω2 − ω1) −
μ2a(B − B0)/h̄ with μa1 = μa −μ1 and μ2a = μ2 −μa . The radia-
tive decay rate of the molecule in the excited state is γe = 2/τspont,
where τspont is the atom spontaneous lifetime. γe is used to de-
scribe the photoassociation loss rates near an MFR.

It is assumed that all population is initially in state |a〉 and the
populations in states |g1〉, |g2〉 and |e〉 are approximately zero [22].
This is a good approximation, if the angular frequency αba 	 Ω1
and dbe/dt 	 γebe/2. This condition is always satisfied in the low-
density limit, but for a very broad Feshbach resonance it may be
difficult to satisfy this condition experimentally.

The adiabatic elimination is done by setting db1/dt = db2/dt =
dbe/dt = 0, yielding

i
dba

dt
=

6∑
j=1

Q 2 j|ba|2 jba (9)
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