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We study the spin-dependent thermoelectric transport through two-dimensional normal/ferromagnetic/
normal/ferromagnetic/normal graphene (NG/FG/NG/FG/NG) junctions. It is found that both charge and
spin thermopowers depend on the FG’s magnetization direction and exhibit an anisotropic behavior.
Interestingly, the spin thermopower can be as large as the charge thermopower and even can exceed
the latter in magnitude. Moreover, the pure spin thermopower and spin current emerge in this device.
The results obtained here suggest a feasible way of enhancing thermospin effects and generating the pure
spin current in two-dimensional graphene.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Spin caloritronics, the combination of thermoelectrics and spin-
tronics, focusing on heat and spin transport, has attracted much
interest [1–13]. A notable recent discovery of spin caloritronics
is the observation of spin Seebeck effect by Uchida et al. [1],
which further inspires widely experimental and theoretical investi-
gations. The spin Seebeck effect was observed in various materials
ranging from the metallic ferromagnets Co2MnSi [2] to the semi-
conducting ferromagnet (Ga,Mn)As [3], and even in the insulat-
ing magnets LaY2Fe5O12 [4] and (Mn,Zn)Fe2O4 [8]. Jia and Berak-
dar [6] also theoretically investigated the anisotropic charge and
spin thermopower across normal-metal/helical-multiferroic/ferro-
magnetic heterojunctions. However, the spin thermopower in these
bulk samples is so weak that it may be overwhelmed by the ac-
companied charge thermopower of several orders larger. In ad-
dition, the temperature difference unavoidably generates also a
regular voltage bias across the sample, which may preclude easy
applicability in spintronic devices.

On the other hand the spin-dependent thermoelectric prop-
erties of graphene have also attracted a great attention [14–19].
Thermally driven spin-polarized currents through a magnetized
zigzag graphene nanoribbon(ZGNR)-based device have been re-
ported in Refs. [14–16]. Zeng et al. [17] found a very large mul-
tivalued and controllable thermal magnetoresistance and charge
Seebeck effects in a spin valve which consists of ZGNR electrodes
with different magnetic configurations. Cheng [18] investigated the
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spin thermopower and thermoconductance properties in a ferro-
magnetic zigzag edged graphene nanoribbon. The results indicate
that two mechanisms, Klein tunneling and the band selective rule,
are involved to determine the thermoelectric properties. However,
the results obtained for such heterostructures were shown to be
very sensitive to the device geometry, e.g., the device length and
the disorder effects [14–16,18,20]. So, their use for realistic ap-
plications is not realized till now due to the extreme difficulty
in the experimental implementation. In this view, besides better
understanding the thermoelectric transport in graphene quantum
structures, the investigation of the spin-dependent thermopower
based on two-dimensional (2D) graphene is desirable for the de-
velopment of such materials in spin caloritronics.

In this paper we study the spin-dependent thermoelectric
transport through 2D normal/ferromagnetic/normal/ferromagnetic/
normal graphene (NG/FG/NG/FG/NG) junctions. Both charge and
spin thermopowers depend on the magnetization direction of the
right FG and become strongly anisotropic. The spin thermopower
can be as large as the charge thermopower and even can exceed
the latter in magnitude. Moreover, the pure spin thermopower and
spin current can be obtained in this device.

2. Model and formulation

The device we consider here is a 2D NG/FG/NG/FG/NG junc-
tion with a temperature bias �T = T L − T R , where T L (T R ) is
the temperature in the left (right) lead (Fig. 1(a)). The graphene
is parallel to the x–y plane. The NG/FG (or FG/NG) interfaces lo-
cate at x = 0, L, 2L, and 3L, respectively, where the x axis is
chosen to be perpendicular to the interface. The ferromagnetism
in the FG regions can be induced by doping and defect or putting
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Fig. 1. (a) A schematic diagram of a 2D NG/FG/NG/FG/NG junction with a tempera-
ture bias. (b) Dispersion relation of the device in the parallel (antiparallel) magne-
tization configuration.

a magnetic insulator bar onto a graphene sheet [21,22]. The mag-
netization vector in the FG regions is �h(r) = h(sin θ,0, cos θ) with
h the magnitude of exchange field. The magnetization in the left
FG is assumed along the z axis, i.e., θ = 0; while that in the right
FG orients along the (sin θ,0, cos θ) direction, which can be con-
trolled by a weak external magnetic field. The Hamiltonian of such
a structure simply reads [23]

Ĥ = v F σ0 ⊗ (�τ · �p) + (�σ · �h(r)
) ⊗ τ0, (1)

where v F ≈ 106 m/s is the Fermi velocity, �τ = (τx, τy) and �σ =
(σx, σy) are Pauli matrices in pseudospin and spin space, and σ0
and τ0 are unit matrices. Dispersion relation of the device in the
NG and FG regions is illustrated in Fig. 1(b).

Consider a spin-σ (σ =↑,↓, or ±) electron incident from
the left lead on the NG/FG interface at an angle φ to the in-
terface normal. The wave functions are given as follows. In the
left and right leads ΨL = ψ+

σ + r↑σ ψ−
↑ + r↓σ ψ−

↓ , and ΨR =
t↑σ ψ+

↑ + t↓σ ψ+
↓ ; In the middle NG region ΨM = pψ+

↑ + qψ+
↓ +

mψ−
↑ + nψ−

↓ . ψ+
σ and ψ−

σ are ψδ↑ = (1, δeδiφ,0,0)T eδikx and ψδ↑ =
(0,0,1, δeδiφ)T eδikx , where the superscript T denotes transposition
and δ = ±1. In the left (right) FG region we have ΨF = aL(R)ψ

+
F↑ +

bL(R)ψ
+
F↓ + cL(R)ψ

−
F↑ + dL(R)ψ

−
F↓ , where the wave functions are

ψδ
F↑ = (cos(θ1), δ cos(θ1)eiδφ↑ , sin(θ1), δ sin(θ1)eiδφ↑)T eiδk↑x and

ψσ
F↓ = (− sin(θ1),−δ sin(θ1)eiδφ↓ , cos(θ1), δ cos(θ1)eiδφ↓)T eiδk↓x

with θ1 = 0 (θ/2) in the left (right) FG region. The wave vec-

tors are k = E cosφ/h̄v F , kσ =
√

(E + σh)2 − (h̄v F ky)2/h̄v F , and

ky = E sinφ/h̄v F = (E + σh) sin φσ /h̄v F . By matching the wave
functions at the NG/FG interfaces, we can obtain the reflection and
transmission coefficients r↑σ and t↑σ (t↓σ and r↓σ ) in the spin-up
(spin-down) channel. The current can be given as

Iσ = e

h

∫
dE N(E)

∫
dφ cosφTσ

[
f L(E) − f R(E)

]
(2)

with the transmission probability in the spin-σ channel Tσ =
|tσσ |2 + |tσ σ̄ |2, N(E) = |E+V |W

h̄v F
and W the width of the graphene

sheet. f L(R)(E) = {1 + exp[(E − E F )/kB T L(R)]}−1 stands for the
Fermi distribution function in the L (R) lead and E F is the Fermi
energy.

Utilizing the linear response assumption, i.e., T L ≈ T R = T , the
spin-dependent current can be rewritten as

Iσ = eL0σ �μσ + e

T
L1σ �T , (3)

where �μσ = e�Vσ is the difference in the chemical potentials of
the two leads in the spin-σ channel, and �Vσ = (�V e + 1

2 σ�V s)

with �V e = [ 1
2 (μR↑ + μR↓) − 1

2 (μL↑ +μL↓)]/e the charge bias. As
the transmission is spin dependent, the temperature gradient may
lead to a spin accumulation in the leads, which generally results
in a nonzero spin-voltage bias �V s = (δμR − δμL)/e, where δμi =
δμi↑ − δμi↓ (i = L, R) with δμiσ the electrochemical potential of
the spin-σ channel in the i lead. The coefficients Lnσ (n = 0,1,2)
are defined as Lnσ = 1

h

∫
dE(E − E F )n N(E)

∫
dφTσ cosφ[− ∂ f (E)

∂ E ],
where f (E) is the Fermi–Dirac distribution function. Thus, one can
introduce the spin-dependent thermopower Sσ by taking Iσ = 0
[6,24,25],

Sσ = �Vσ

�T
= − 1

eT

L1σ

L0σ
. (4)

The charge thermopower Sc and the spin thermopower Ss are cal-
culated as

Sc = 1

2
(S↑ + S↓), (5)

and

Ss = 1

2
(S↑ − S↓). (6)

3. Results and discussions

We perform numerical calculations for h = 5 meV, L = 500 nm
and T = 10 K. In Fig. 2(a), the charge thermopower Sc and spin
thermopower Ss are plotted as a function of the Fermi energy
E F . As shown in Fig. 2(a), Sc in both parallel θ = 0 and antipar-
allel θ = π magnetization configurations vary rather sharply in
the symmetry point E F = 0, where Sc changes sign and reaches
the maxima on one side of E F = 0 and the minima on the other
side. When E F is far away from zero, |Sc| decreases with E F . How-
ever, in contrast to Sc , Ss strongly depends on the magnetization
configuration. For the antiparallel magnetization configuration Ss

is always zero (dash dot line in Fig. 2(a)). While for the parallel
configuration Ss is an even function of E F and can reach a min-
imum at E F = 0, where Sc is zero, so we can obtain a pure spin
thermopower. It should be pointed that Ss can be as large as Sc

and even can exceed the latter in magnitude. This is very different
from the results in Refs. [1–6], where Ss is so weak that it may be
overwhelmed by the accompanied Sc of several orders larger.

In order to explain the underlying physics, we plot the spin-
dependent thermopower Sσ in the parallel magnetization con-
figuration as a function of E F in Fig. 2(b). It is found that Sσ

has the following symmetry Sσ (E F ) = −S σ̄ (−E F ). At E F = 0,
we obtains S↑(0) = −S↓(0), so a pure spin thermopower but
no charge counterpart can be generated. The behaviors of Sσ

can be understood from the dispersion relation of the device
we consider (Fig. 1(b)). For the parallel magnetization configu-
ration, the dispersion relations for the spin-up and spin-down
channels are symmetrical about E F = 0. Sσ can be rewritten as
Sσ = −|Seσ |+ Shσ , where −|Seσ | (Shσ ) is the contribution of elec-
trons (holes) with energy near the Fermi energy to Sσ . Due to
the symmetry of the dispersion relations we observe |Seσ (E F )| =
Shσ̄ (−E F ) and |Seσ̄ (−E F )| = Shσ (E F ), which leads to the rela-
tion Sσ (E F ) = −S σ̄ (−E F ). However, for the antiparallel config-
uration we can find the thermopower Sσ is spin-independent
and Ss is zero. This can be understand as follows. For the an-
tiparallel configuration, the transport of σ spin from left to right
is equal to that for σ̄ spin from right to left by the struc-
ture symmetry, so the transmission probabilities have the relation
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