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The Sagnac effect is an important phase coherent effect in optical and atom interferometers where
rotations with respect to an inertial frame are measured in the interference pattern. We analyze the
Sagnac effect in a serial array of mesoscopic ring shaped electron interferometers comprised of rings
with half-circumferences comparable to the mean free path. The entire array is, however, much larger
than the phase coherence length. Phase coherent transport at the level of individual rings leads to a
measurable Sagnac effect in the conductance of the chain. We use the signal to noise ratio (SNR) to
determine the number of rings needed to measure a desired rotation rate.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Matter wave interferometry is a key paradigm of quantum me-
chanics. Its roots lie at the very foundation of quantum theory
as a way of experimentally demonstrating the wave properties
of matter. Recently matter wave interferometry with laser cooled
atoms has shown great promise for novel sensing devices [1] rang-
ing from precision measurements of inter-atomic forces to gravity
gradiometers for geophysical prospecting and tests of general rela-
tivity [2,3].

One of the most exciting applications of atom interferometry is
the measurement of inertial rotations via the Sagnac effect, which
causes the effective path length of two arms of an interferometer
to differ by an amount proportional to the rotation rate Ω perpen-
dicular to the plane of the interferometer. In general for a matter
wave interferometer (MI) with particles of mass M , the phase shift
in the interference fringes induced by Ω is ΘS = 2M AΩ/h̄, where
A is the area enclosed by the two interferometer paths [4]. In
comparison to an optical interferometer gyroscope of equal A that
also operates on the basis of the Sagnac effect [5,6], the phase
shift and hence sensitivity to rotations is Mc2/h̄ω larger for the
MI than the optical gyroscope [7,8]. (Here ω is the frequency of
the light.) For atoms, this represents a 1010 enhancement of the
phase shift while for electrons the enhancement would be 106.
Since optical Sagnac gyroscopes have already found wide com-
mercial application with the military and commercial aviation for
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inertial navigation and positioning and stabilization, the additional
potential 1010 sensitivity with atoms has been a strong stimu-
lus for atom interferometry research leading to numerous exper-
imental demonstrations of atom interferometer Sagnac gyroscopes
with sensitivities surpassing the best commercial optical devices
[2,3,9,10].

Since the Sagnac effect applies to all types of MI’s, it should
in principle also be observable with electrons in a phase coher-
ent solid state interferometer such as those used in studies of the
Aharonov–Bohm (AB) effect in metals [11], semiconductors [12],
and graphene [13]. The Sagnac effect has been observed using an
electron interferometer in vacuum [14] and at the same time it is
worth pointing out that the Sagnac effect is mathematically iden-
tical to the AB effect [15]. However, a quick estimate of the size
of ΘS for an electron interferometer with circumference equal to
a typical phase coherence length �φ ∼ 10 μm, shows that ΘS is
far too small to be measured for values of Ω that could be pro-
duced in a laboratory. This begs the question is there a way to
scale up the Sagnac signal to a level that is readily detectable?
Here we propose a novel type of solid state device consisting of a
serial array of mesoscopic ring shaped interferometers connected
via quantum wires. Although the overall device dimensions is or-
ders of magnitude larger than either the mean free path or phase
coherence length, phase coherence at the level of individual in-
terferometers still produces a Sagnac effect that can be measured
in the conductance of the chain for a sufficiently large number of
rings.

Our analysis includes an analytic expression for the conduc-
tance of the chain in the presence of Sagnac rotational phase
shifts. To obtain this analytic expression we make two key simpli-
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Fig. 1. Schematic diagram of a chain of ring shaped quasi-ballistic electron inter-
ferometers connected via nanowires and between leads with bias voltage �V =
V 1 − V 2.

fying assumptions. First we assume single mode transport in the
rings. Secondly, it is assumed that for a chain of N rings, the elec-
trons propagate through n < N rings without having their phases
randomized in a quasi-ballistic manner. These rings serve as the
Sagnac interferometers that generate the rotation induced effect
on the conductance. The remaining N − n rings along with the
interconnects between rings, simply give rise to an overall addi-
tional resistance. For rings with half-circumferences less than or
equal to the mean free path, n ≈ N . We calculate the signal to
noise ratio (SNR) for the chain by including the effect of Johnson–
Nyquist thermal noise and shot noise and show that it is possible
to achieve SNR > 1 for sub-Hz rotation rates in a chain with an
overall size of about 1 cm2. The assumptions allow us to capture
the essential physics in a succinct manner with it to be understood
that more precise quantitative predictions required for any exper-
iment require numerical simulations that are beyond the scope of
this work.

2. Model

The interferometer chain shown in Fig. 1 consists of an array of
conducting micron size rings with a nanowire between each ring
and the entire array is situated between two macroscopic leads
with bias potential �V between them. Here we do not enter into
details about the materials in which the device is fabricated but
instead characterize the system by a mean free path �mf p , phase
coherence length �φ , effective mass m∗ of the charge carriers (elec-
trons), and an overall resistance for the nanowires. It is assumed
that the device could be fabricated in semiconductors using stan-
dard lithographic techniques or in carbon based conductors such
as graphene. Here we also assume that �mf p ≈ �φ .

The half-circumference, �, of the rings is assumed to be less
than �φ so that in general electrons entering the ring are split be-
tween the two arms and are later recombined at the other end
without undergoing any phase decoherence. If a ring rotates at a
rate Ω about an axis perpendicular to the plane of the rings, a
path difference is created in the two branches of the ring seg-
ments � ± δ� = � ± Ω A/v so that when the electron de Broglie
waves recombine, they are out of phase by the amount

ΘS = 2kδ� = 2Ω Am∗/h̄,

which is the Sagnac effect for a ring with enclosed area A = π R2

and electrons with effective mass m∗ [17]. For an array of rings,
the axis of rotation does not correspond in general to the center of
each ring. However, it can be shown that in the calculation of the
Sagnac phase shift, the terms proportional to the distance R0 from
the axis of rotation to the ring center cancel such that the above

Fig. 2. Transmission coefficient as a function of both kl and ϕ for a single ring.

expression ΘS continues to be valid [19]. In general we define the
relative phase shift between arms of each ring as

ϕi = Θ
(i)
S + θ = 2πm∗R2

i Ω

h̄
+ θ, (1)

which takes into account variations in the sizes of rings through
the radius Ri = �i/π . An additional phase shift θ is introduced,
which is used to tune the interference between paths to ensure
maximum sensitivity of the gyroscope. It can be controlled in var-
ious ways including applying an external magnetic field to the
device to control the Aharonov–Bohm flux or designing the rings
with a path difference that corresponds to the desired phase offset.

Connecting the rings are nanowires, which because of their
width, length, and/or bulk mobility, it is assumed that the elec-
tron transport is incoherent in these segments and therefore they
are fully characterized by their resistivities z j for j = 1, . . . , N − 1.
The probability that an electron propagates a distance l without
having its phase randomized is P (l) = exp(−l/�φ) from which one
can see that for an ensemble of N rings with half-circumference
�, the number n of rings that do contribute a Sagnac phase is
n = N exp(−�/�φ) while for the remaining δN = N − n the relative
phases of the electrons are randomized yielding no interference.
The incoherent contribution of the δN rings can be included in the
resistivities of the nanowires.

Using the Landauer–Buttiker formalism, we calculate the con-
ductance of each ring [16]. It has been shown that the treatment
of the Aharonov–Bohm (AB) effect and Sagnac effects are mathe-
matically identical for a closed path interferometer [15]. Therefore,
we may use the transmission formula for a ballistic ring with elec-
trons of wave number k in the presence of an AB flux [18] and
simply substitute ϕi for the AB phase [20],

T̃ i = 64(1 − cos(kli))(1 + cos(ϕi))

4[(1 + 4 cos(ϕi) − 5 cos(kli))
2 + (4 sin(kli))

2] . (2)

Fig. 2 indicates that for any kli there will be a ϕi that maximizes
the transmission coefficient. By setting the T̃ i to its maximum
value of 1 we obtain analytical expressions for the values of ϕi
at T̃ i = 1,

ϕi = ± cos−1
(1 + 3 cos(kli) + 4

√
1 − sin2(kli) − cos2(kli)

4

)
. (3)

Fig. 2 shows that the choice of kli only effects the location where
transmission is maximum and can be chosen to conveniently max-
imize the response to changes in ϕ . In what follows, we assume
that all rings are of the same size with identical Ri and li in or-
der to derive an analytic expression for the conductance. Under
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