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Simplified models for vibrational energy transfer in proteins
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Abstract

We consider the transfer of vibrational energy in proteins and derive a simplified model for the resonant energy exchange between different
vibrational modes. We use the parameters of an earlier study [K. Moritsugu, et al., Phys. Rev. Lett. 85 (2000) 3970 ] to compare our predictions
with the results of the molecular dynamics simulations, and reveal an excellent agreement.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The study of energy transfer in excited polymer molecules
is central for a deeper understanding of chemical and molecular
dynamics, and has a long history [1,2]. It is well established that
a protein molecule is likewise a complex system characterised
by highly anharmonic dynamics [3]. Most current studies of
the nonlinear dynamics of proteins and other macromolecu-
lar structures are computational, but serious limitations remain
for the study of large-scale dynamics on timescales beyond
nanoseconds, especially for large macromolecules. Therefore,
novel approaches for analysing the dynamics of such com-
plex nonlinear structures, sometimes based on the methods de-
veloped in other fields, may allow a deeper understanding of
the complex dynamics occurring in such multi-particle struc-
tures.

Recently, Moritsugu et al. [4] studied the intramolecular
transfer of vibrational energy in myoglobin. Specifically, they
investigated the transfer of energy from one excited mode, one
with a frequency in the same range as that excited by the pho-
todissociation of a CO ligand from the heme group, to several
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other modes. They found that the vibrational energy is trans-
ferred from a given normal mode to very few other modes, the
modes selected by the relations between their frequencies. Re-
peating the molecular dynamics simulation with just these few
modes, the results stayed the same, confirming that only these
modes were important for the initial dynamics.

Tanaka et al. [5] performed a similar numerical study of the
vibrational energy transfer in a third-generation aryl ether azo-
dendrimer and an azobenzene. As well as identifying the cor-
responding mode selections, they observed that the vibrational
energy relaxation does not occur homogeneously with time, but
rapidly once a threshold has passed, and that the relaxation time
for the resonant energy transfer is sensitively dependent on the
magnitude of the excitation given initially.

The phenomenon of resonant energy transfer through cou-
pled modes occurs in many fields of physics. One such well-
known field is nonlinear optics [6], where the quadratic non-
linear response of a nonlinear medium governs many types
of parametric wave interactions. In this Letter, we show how
to employ this analogy and derive a system of coupled-mode
equations for slowly varying envelopes of the vibrational modes
which describes, with good accuracy, the dynamics of the reso-
nant energy exchange between the macromolecular excitations.
As we demonstrate below, this provides a natural link from
many vibrational energy transfer processes to the problems of
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resonant parametric interaction between different harmonics in
nonlinear optics.

Similar selection rules to those we will derive occur fre-
quently in quantum mechanics, through conservation of energy
E = h̄ω. In molecular dynamics, frequency selection rules—
whether classical or quantum in origin—are often called ‘Fermi
resonances’, after Fermi’s 2 : 1 rule for vibrations in carbon
dioxide [7], a name sometimes conflated with Fermi’s Golden
Rule [8] for first-order transition rates in quantum mechanics.
We wish to emphasise that the energy transfer and frequency
selection processes described in this Letter are purely clas-
sical. Quantum-mechanical approaches, for example that by
Fujisaki [9], where computationally feasible, may yield more
accurate results.

2. Model

We follow Moritsugu et al. [4] and consider the multi-
particle system described by the effective Lagrangian

(1)L =
N∑

j=1

1

2
q̇2
j −

N∑
j=1

1

2
ω2

j q
2
j − αq1q2q3 − βq2

1q4,

where qi is the amplitude of the ith normal mode with fre-
quency ωi and the overdot denotes the time derivative. The
modes interact through third-order coupling. We model four
normal modes, i = 1, . . . ,4, and include both types of third-
order coupling between them: modes 1, 2 and 3 interact with
what we shall call type 1 coupling, with coupling strength
α(ω1,ω2,ω3), while modes 1 and 4 interact through type 2 with
strength β(ω1,ω4).

The Lagrangian (1) yields the effective equations of motion

q̈1 = −ω2
1q1 − αq2q3 − 2βq1q4,

q̈2 = −ω2
2q2 − αq1q3,

q̈3 = −ω2
3q3 − αq1q2,

q̈4 = −ω2
4q4 − βq2

1 .

Each of these equations has the form

q̈j + ω2
j qj = fj (q1, q2, q3, q4),

where fj describes a weak coupling between the modes. In-
troducing the complex amplitudes ψj(t) such that qj (t) =
ψj(t)e

iωj t + c.c., we obtain

2ψ̇j iωj e
iωj t − 2ψ̇∗

j iωj e
−iωj t = fj ,

where it is assumed that ψj(t) varies slowly. Multiplying by
e−iωj t and integrating over one period Tj = 2π/ωj gives

ψ̇j (t) = −i

2ωjTj

t+Tj∫

t

fj e
−iωj t dt.

The integrand in this equation is where mode selection is
enforced. Only those combinations of coupling terms fj which
give an integrand near to constant will contribute significantly
to ψ̇(t). This will occur for ω1 − ω2 − ω3 ≡ �α ∼ 0 or

2ω1 − ω4 ≡ �β ∼ 0. There exist other possible frequency or-
derings for the type 1 coupling; we choose this one to match
Moritsugu et al. [4]. There are also many possible pairs of ω2
and ω3, but the coupling coefficients determine the dominant
pair.

Assuming that �α and �β � ω1,2,3,4, we obtain

ψ̇1 = (iα/2ω1)ψ2ψ3 exp(−i�αt)

+ (2iβ/2ω1)ψ
∗
1 ψ4 exp(−i�βt),

ψ̇2 = (iα/2ω2)ψ1ψ
∗
3 exp(i�αt),

ψ̇3 = (iα/2ω3)ψ1ψ
∗
2 exp(i�αt),

(2)ψ̇4 = (iβ/2ω4)ψ
2
1 exp(i�βt).

Writing each complex amplitude as ψj ≡ Aj exp(iΦj ), it is
then straightforward to obtain an integrable set of equations
for the four mode amplitudes Aj and the two relative phases
ΦA ≡ Φ1 −Φ2 −Φ3 +�αt and ΦB ≡ Φ4 −2Φ1 −�βt . The en-
ergy in each mode is given by Ej = 1

2 (ω2
j q

2
j + q̇2

j ) = 2ω2
j |ψj |2.

The assumption of weak coupling is most accurate at low
temperatures. At higher temperatures, there is an increased
probability of transitions to different conformations; this is out-
side the scope of the present investigation.

3. Results and discussions

In their analysis, Moritsugu et al. [4] introduced a system of
model oscillators based on a Lagrangian similar to Eq. (1). They
modeled the resonant modes with frequencies ω1 = 5.385,
ω2 = 2.362, ω3 = 3.024 and ω4 = 10.779, and with coupling
α = −0.13 and β = 0.12. Using these parameters, we solve
numerically the system of amplitude equations (2). Mode 1 is
assigned an initial energy of 0.5, to match Moritsugu et al.’s
own model simulations. The three other modes are assigned
initial energies of 4.5×10−5 each. Negative amplitudes are per-
mitted, being interpreted as a π phase shift. The initial phases
are ΦA(0) = ΦB(0) = 0. Fig. 1 shows our numerical results
overlaid on the same figure as the molecular dynamics simula-
tion of Moritsugu et al. The match is excellent.

The formalism employed for deriving Eqs. (2) is almost
identical to that for the study of parametric processes in op-
tics [6]. In particular, our type 1 interaction produces a resonant
interaction like sum-frequency generation, except in reverse:
the summed frequency here transfers energy to its two sum-
mands. Our type 2 interaction is analogous to optical second-
harmonic generation.

The excellent match in Fig. 1 illustrates that accurate sim-
ulation of the initial dynamics is possible without resorting to
the full molecular dynamics simulations, provided the normal
modes and their coupling coefficients have been identified, and
that the protein remains in the same conformational substate,
such as at low temperature.

The simple form of the model permits some conclusions of
a general nature. For example, from the present model, the re-
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