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Statistical mechanics of melting mediated by two types of defects
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Abstract

We propose a defect-mediated melting theory based on the statistics of two types of lattice defects, the point defects and dislocation pairs. The
model predicts a first-order phase transition. Based on the model, phase transition temperature, latent heat and other thermodynamic functions are
derived. Melting occurs due to discontinuous growth of point defects into dislocation pairs. The calculated phase transition temperature for five
alkali metallic crystals are in fair agreement with measured melting temperatures, and the Richards’ rule is derived by the model also.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Solid–liquid phase transition is one of the fundamental top-
ics in condensed matter physics. The very first theory of melting
was proposed by Lindemann nearly 100 years ago [1], and the
idea of a proliferation of dislocations being associated with
melting dates back to Mott more than 50 years ago [2]. It was
in the 1970s that a formal dislocation-mediated melting the-
ory was proposed by Kosterlitz and Thouless (KT) [3], which
suggested that the phase transition occurs via an unbinding dis-
location pairs (DP) in the crystals. Subsequently, the dislocation
mediated melting was studied for elemental crystals covering
more than half of the elements in the Periodic Table and some
empirical rules for melting have been established [4].

However, despite of the effort of many researchers, the melt-
ing process has not been fully understood. Even though many
theories on melting have been proposed, some of them cannot
predict the melting temperature correctly, while others fail to
predict the correct order of the phase transitions. For example,
second-order phase transition was predicted for crystals based
on the KT theory, but first-order phase transition was observed

* Corresponding author.
E-mail address: kjliu@sit.edu.cn (K. Liu).

experimentally for all of the melting transition. Some of the
existing melting theories are based on the mechanism of one-
phase melting or continuous melting, i.e., the phase transition is
derived from one phase. Since first-order phase transition deal
with two phases, such theories cannot be expected to correctly
describe a first-order phase transition. Therefore, how a solid
melts has been a longstanding question.

In the present work, we study melting of crystals mediated
by two types of defects: point defects and dislocation pairs, and
develop a defect mediated melting theory. Different types of
defects are allowed to transform from one to the other, and this
transformation may lead to the first-order of phase transition of
a crystal.

Many quantities character a melting process. Besides the
melting temperature Tm, the latent heat of fusion is another
one. Based on the model proposed in this Letter, theoreti-
cal predictions for both quantities are verified by experimental
data.

2. Theory of melting

We first consider a dislocation pair (DP) which consists of
two parallel line dislocations with opposite Burgers vectors.
The interact energy per unit length for a screw dislocation pair
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can be written as [5]

(1)U(r) = j ln

(
r

r0

)
+ 2εc,

where j is the coupling constant per unit length which is related
to the elastic interaction between two dislocations in the DP,
r is the distance between two dislocations of the pair, and r0 is
the radius of the cylindrical dislocation core region. The energy
per unit length inside the core region for a single dislocation
is taken to be a constant, εc. Only screw dislocation pair will
be considered in the present study for reason given below. The
interaction energy given in Eq. (1) is the same as that of a two-
dimensional (2D) dipolar Coulomb gas which has been studied
by many researchers [6–8]. However, we provide an alternate
and simpler approach in the present work.

The coupling constant j per unit length can be obtained from
the dislocation theory. For screw dislocation, j is given by [9]

(2)j = μ

2π
b2,

where μ is the shear modulus and b is the modulus of the Burg-
ers vector. Although the core cutoff r0 cannot be obtained from
the elastic theory, it can be estimated using the Periels–Nabbaro
model [9] of dislocation. According to this model, the radius r0
of the dislocation can be expressed as

(3)r0 = b/α,

where α is called the core parameter which has the value 3–4
for nonmetal crystals and 1–2 for metals [9]. To simplify our
discussion, we shall only discuss the metal case through out
this Letter.

The statistical system we study is a three-dimensional crys-
tal containing N lattice sites in its surface, where N(= even) is
assumed to be the order of Avogadro’s number. We further as-
sume that there are n pairs of dislocations in the system, and all
of dislocation lines are perpendicular to the surface. As a DP
involves at lest two lattice sites, we thus have 0 < n < N/2. Let
ri denotes the distance between the two dislocations in the ith
(0 � i � n) DP. The interaction energy of each pair is expressed
by Eq. (1). To simplify the calculation, the pair–pair interaction
will be neglected through out this Letter, so that the partition
function for the system containing n DP, denoted by zn is given
by

(4)zn =
n∑

i=1

∑
all config

exp
(−βU(ri)

)
,

where β = (kBT )−1 with kB being the Boltzmann’s constant
and T the temperature. The first summation on the right-hand
side of Eq. (4) is over all n DPs, and the second summation
is over all configurations of the ith pair. The simplest but non-
trivial case of Eq. (4) is n = 1. Based on the continuous media
model of solid, it is

(5)

z1 =
∑

all config

exp
(−βU(r)

)

= 1

2

N

A

∫ ∫
R

exp
(−βU(r)

)
r dr dθ.

The factor N in Eq. (5) comes from the fact that each dislo-
cation of the DP can be located at each of the N lattice sites.
The factor of 1/2 is due to double counting of the configura-
tions resulting from exchange of the two dislocations of the DP.
The domain of the integration, R, is over the entire 2D area,
i.e., b < r < ∞ and 0 < θ < 2π . The symbol, A, in Eq. (5) de-
notes the area of the primitive lattice cell such that R = NA, or
A = π(b/2)2 in the continuous media model. The integration in
Eq. (5) can be carried out exactly. Inserting Eq. (1) into Eq. (5),
one has

z1 = N

2

4α−j/kBT

J/kBT − 2
ξ (for j/kBT > 2),

where ξ is given by

ξ ≡ exp(−2βεc).

For more general case (n > 1), if the pair–pair interaction is
neglected, the partition function zn can be written as

zn =
(

N/2

n

)(
4α−jβ

jβ − 2
ξ

)n

,

where
(
N
i

) = N !
i!(N−i)! is the binomial coefficient and N ! denotes

the factorial of N .
The dislocation pairs in the system can be treated like non-

distinguishable particles. The number of such particles n varies
in the range (0 � n � N/2) because the particles can be ther-
mally excited at finite temperature. It is noted that chemical
potential does not appear in the partition function. This is be-
cause the number of particles n is a non-conservative number,
similar to the number of phonons in solid.

The grand partition function, Z(T ), can be expressed as

(6)

Z(T ) =
N/2∑
i=0

zi =
N/2∑
i=0

(
N/2

i

)(
4α−jβ

jβ − 2
ξ

)i

=
(

1 + 4α−jβ

jβ − 2
ξ

)N/2

.

Thus, the thermodynamic grand potential Ω(T ) is given by

(7)Ω(T ) = −kBT lnZ(T ) = −NkBT

2
ln

(
1 + 4α−jβξ

jβ − 2

)
.

Next, we consider the statistical mechanics of point defects.
In order to compare the statistical results of the point defects
with those of the dislocation pairs, the point defect model
should be compatible to that of the DP. Therefore, the DP and
point defect must have the same origin, so that one defect sys-
tem can transform to the other under certain conditions.

A point defect in a 2D crystal can be expressed in terms of
a minimum dislocation pair. The energy of a point defect, Up ,
can be given by the extreme case with b = r0 in Eq. (1), i.e.,

(8)Up = j ln(α) + 2εc.

This model of point defect is similar to that of a lattice gas,
except that our model is derived based on the minimum screw
dislocation pair. The geometrical structure of such a defect is an
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