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Abstract

The magnetic polariton propagation in metamagnet layered structures is theoretically studied by using a transfer matrix approach. The layered
structures considered here are made up by the stacking of two different layers (also known as building blocks, named A and B), where one of
them is a metamagnetic thin film (A), while the other is a non-magnetic insulator thin layer (B). We take into account both the antiferromagnetic
(AFM) and ferromagnetic (FM) phases of the metamagnetic material. For the periodic arrangement, the bulk modes are characterized by two
large symmetric bands, with non-reciprocal surface modes between them. The quasiperiodic metamagnetic structure is then built up by following
the Fibonacci sequence, whose long-range order effect is then investigated, giving rise to an interesting self-similar spectra and a power-law
profile.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Since the discovery of the icosahedral phase on an Al–Mn
alloy by Shechtman et al. [1], researches on the subject of quasi-
periodic structures (QPS) have attracted a lot of attention. A fas-
cinating feature of these structures is that they exhibit collective
properties not shared by their constituent parts. Furthermore,
the long-range correlations induced by the construction of these
systems are expected to be reflected to some degree in their var-
ious spectra (as in light propagation, electronic transmission,
density of states, polaritons, etc.), defining a novel description
of disorder. Indeed, theoretical transfer matrix treatments show
that these spectra are fractals (for an up to date review see
Refs. [2,3]).
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Advances in the fabrication of multilayer structures and its
characterization, such as neutron diffraction and X-ray scatter-
ing, provide the possibility to reveal their novel features, giving
a fair physical background, which spans from methods based
on numerical simulation to rigorous mathematical demonstra-
tions [4]. Furthermore,they form a new class of intriguing mate-
rials, where their macroscopic properties are designed (or con-
trolled) by varying the thickness (or composition) of the con-
stituent films. In fact, some of these properties may be unique
to the multilayer structures and provide the potential for device
applications [5].

Although the spin waves propagation on anisotropic metam-
agnets FeCl2 and FeBr2 was already previously studied [6,7],
and temperature effects on these spectra were also consid-
ered [8,9], for the best of our knowledge nothing was published
so far concerning the propagation, in metamagnet layered struc-
tures, of the mixed mode which arises from a magnon (the
quantum of a spin wave)–photon interaction, the so-called mag-
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netic polaritons, which yields a much richer spectrum. It is
therefore our aim to fill this gap by presenting in this work a
comprehensive investigation of localization and scaling proper-
ties of the magnetic polaritons that can propagate in magnetic
multilayer structures made up of materials A (metamagnet) and
B (insulator) stacked alternately, by following the Fibonacci
quasiperiodic mathematical sequence. Our model is based on
a transfer matrix approach, in order to simplify the algebra,
which is otherwise quite involved. The metamagnetic materials
consist of ferromagnetically ordered layers, with the intralayer
ferromagnetic exchange interactions being much stronger than
the weak antiferromagnetic interaction between adjacent lay-
ers. We consider also the presence of a weak external magnetic
field �H applied perpendicular to the layers. In the regime of
low temperatures and for small values of the external magnetic
field �H , the adjacent layers of the metamagnet material order
antiparallel to one another, giving the antiferromagnetic (AFM)
phase. On the other hand, for larger �H enough to overcome
the interlayer antiferromagnetic coupling, the overall ordering
is ferromagnetic (FM phase). Both cases will be considered in
this work.

The plan of this Letter is as follows: in Section 2, we present
the method of calculation employed here, which is based on the
transfer matrix approach. The magnetic polariton dispersion re-
lation (bulk and surface modes) is then determined. Section 3
is devoted to the discussion of the polariton’s dispersion rela-
tion for the periodic and quasiperiodic structures. Further, we
present also their localization profiles and the connection with
a fractal/multifractal behavior through the scaling law of their
bandwidth spectra.

2. General theory

Before to treat the general problem of the QPS, it is more in-
tuitive to deal first with the simpler periodic case, in which the
building blocks A (metamagnet) and B (insulator) are arranged
in an alternating way ABAB · · · . It is displayed in a geom-
etry such that the z-axis coordinate is placed parallel to the
easy-axis of the layers. The thickness of the magnetic (non-
magnetic) layer is represented by dA (dB ), and therefore the
unit-cell thickness is given by L = dA + dB . It fills the semi-
space z � 0, with its surface parallel to the xy plane. On the
z � 0 region we have vacuum. The surface polariton propaga-
tion is restricted to be along the x-axis, parallel to the surface
(Voigt geometry). The generalization for the QPS will be con-
sidered later.

The electric and magnetic fields are given by (s polariza-
tion):

(1)�Hj(x, y, z) = (Hxj ,0,Hzj ) exp(ikxx − iωt),

(2)�Ej(x, y, z) = (0,Eyj ,0) exp(ikxx − iωt),

where for the magnetic layer we have

(3)HxA(z) = An
1AgA + An

2AḡA,

(4)HzA(z) = (−i/μ0)
[
μ−

effA
n
1AgA + μ+

effA
n
2AḡA

]
,

(5)EyA(z) = (i/kx)(ω/c)
[
μ−An

1AgA + μ+An
2AḡA

]
,

where gA = exp(kAz) and ḡA = g−1
A . Also,

(6)μ0 = −k2
x + μ1εAω2/c2,

(7)μ±
eff = ±kxkA + μ2εAω2/c2,

(8)μ± = μ2 − μ1μ
±
eff/μ0,

(9)kA = [
k2
x − μV εAω2/c2]1/2

,

(10)μV = μ1 − μ2
2/μ1,

with μV being the Voigt permeability. Here kx is the in-plane
wave-vector, ω is the angular frequency, c is the speed of light
in vacuum, and εA is the dielectric constant of medium A. One
can show that for the metamagnetic material

(11)μ1 = 1 + 4π(A1ω
2 − B1)

(ω2 − ω1)(ω2 − ω2)
,

(12)μ2 = 4π(A2ω
2 − B2)

(ω2 − ω1)(ω2 − ω2)
,

with Ap , Bp , ωp (p = 1,2) defined elsewhere [10]. It is worth-
while to mention that ω1,2 represent the two resonant frequen-
cies of the metamagnetic material. The first one, ω1, is related
to the precession of the magnetization vector, �M , around the
effective static field, defining the ferromagnetic phase. The sec-
ond one, ω2, which is related to the precession of �M around the
exchange field HE , defines the antiferromagnetic phase.

On the other hand, for the non-magnetic layer we have

(13)HxB(z) = An
1BgB + An

2BḡB,

(14)HzB(z) = (−ikx/kB)
[
An

1BgB − An
2BḡB

]
,

(15)EyB(z) = (i/kB)(ω/c)
[
An

1BgB − An
2BḡA

]
,

where gB = exp(kBz) and ḡB = g−1
B . Also, kB = [k2

x −
εBω2/c2]1/2, with εB being the dielectric constant of medi-
um B .

Defining, for each medium, the two column-vectors

(16)
∣∣An

j

〉 =
[

An
1j

An
2j

]
,

and using Maxwell’s boundary conditions on the interfaces
z = nL + dA and z = (n + 1)L, we find, in matrix form, the
following equations for the amplitudes of the electromagnetic
fields:

(17)MA

∣∣An
A

〉 = NB

∣∣An
B

〉
,

(18)MB

∣∣An
B

〉 = NA

∣∣An+1
A

〉
,

where

MA =
(

fA f̄A

μ−fA μ+f̄A

)
,

(19)MB =
(

fB f̄B

−(kx/kB)fB (kx/kB)f̄B

)
,

(20)NA =
(

1 1
μ− μ+

)
, NB =

(
1 1

−kx/kB kx/kB

)



Download English Version:

https://daneshyari.com/en/article/1861681

Download Persian Version:

https://daneshyari.com/article/1861681

Daneshyari.com

https://daneshyari.com/en/article/1861681
https://daneshyari.com/article/1861681
https://daneshyari.com

