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Non-Markovian random unitary qubit dynamics
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We compare two approaches to non-Markovian quantum evolution: one based on the concept of divisible
maps and the other one based on distinguishability of quantum states. The former concept is fully
characterized in terms of local generator whereas it is in general not true for the latter one. A simple
example of random unitary dynamics of a qubit shows the intricate difference between those approaches.
Moreover, in this case both approaches are fully characterized in terms of local decoherence rates.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Quantum dynamics is represented by the dynamical map, that
is, a family of completely positive and trace preserving maps Λt

(t � 0) such that Λ0 = 1. If ρ is an initial state of the system
then ρt = Λt(ρ) defines evolution of ρ . This description provides
generalization of unitary evolution Λt(ρ) = UtρU †

t with unitary
Ut = e−iHt , where H represents the Hamiltonian of the system.
Any departure from unitary evolution signals the nontrivial inter-
action of the system with an environment which is responsible for
decoherence and dissipation processes [1] in open quantum sys-
tem. The traditional approach to the dynamics of such systems
consists in applying a suitable Born–Markov approximation leading
to the celebrated quantum Markov semigroup [2–4] which neglects
all memory effects. Recent theoretical activity and technological
progress show the importance of more refine approach based on
non-Markovian evolution. Non-Markovian quantum dynamics be-
comes in recent years very active field of both theoretical and
experimental research (see e.g. recent papers [5–29] and references
therein).

Throughout this Letter we call quantum evolution Markovian
if the corresponding dynamical map Λt is divisible [16]. Let us
recall that Λt is divisible if Λt = Vt,sΛs and Vt,s is completely
positive and trace preserving for all t � s, that is, it gives rise to
2-parameter family of legitimate propagators. The essential prop-
erty of Vt,s is the following (inhomogeneous) composition law
Vt,s V s,u = Vt,u for all t � s � u. It should be stressed that Marko-
vian dynamics (divisible map) is entirely characterized by the
properties of the local in time generators Lt . It means that if Λt
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satisfies the time-local Master Equation Λ̇t = LtΛt , then Λt corre-
sponds to Markovian dynamics if and only if the local generator
time-dependent Lt has the standard form [2,3] for all t � 0, that
is,

Ltρ = −i
[

H(t),ρ
] +

∑
α

(
Vα(t)ρV †

α(t) − 1

2

{
V †

α(t)Vα(t),ρ
})

,

with time-dependent Hamiltonian H(t) and noise operators Vα(t).
A different approach to Markovianity was recently proposed by
Breuer et al. [17]: authors of [17] define non-Markovian dynamics
as a time evolution for the open system characterized by a tem-
porary flow of information from the environment back into the
system and manifests itself as an increase in the distinguishability
of pairs of evolving quantum states:

σ(ρ1,ρ2; t) = 1

2

d

dt

∥∥Λt(ρ1 − ρ2)
∥∥

1, (1)

where ‖A‖1 = Tr
√

A† A denotes the trace norm. According to [17]
the dynamics Λt is Markovian iff σ(ρ1,ρ2; t) � 0 for all pairs of
states ρ1, ρ2 and t � 0. Contrary to divisible map this approach
does not correspond to any composition law and is not char-
acterized by the properties of local generator. It turns out that
condition σ(ρ1,ρ2; t) � 0 is less restrictive than requirement of
complete positivity for Vt,s and one can construct Λt which is
non-Markovian (not divisible) but still gives rise to the negative
flow of information (see [13–15]).

In this Letter we provide a simple example of qubit dynamics
for which the condition σ(ρ1,ρ2; t) � 0 is fully characterized by
local generator. We stress that it is the first example of a legitimate
qubit dynamical map for which (i) the divisibility and the condi-
tion for negative information flow define two different classes of
evolutions, and (ii) the information flow is fully controlled by local
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decoherence rates. We discuss possible generalization for random
unitary dynamics of N-level quantum systems.

2. Random unitary dynamics: divisibility vs. information flow

Consider the following random unitary dynamical map

Λtρ =
3∑

α=0

pα(t)σαρσα, (2)

where σ0 = I, and σ1, σ2, σ3 are Pauli matrices, and pα(t) is
time-dependent probability distribution such that p0(0) = 1 which
guarantee that Λ0 = 1. This map was recently investigated in [28].
It is clear that one may consider (2) as a family of Pauli channels.
To answer the question whether Λt is Markovian one has to an-
alyze the corresponding local generator. To find Lt = Λ̇tΛ

−1
t one

has to compute the inverse map Λ−1
t . Let us observe that

Λt(σα) = λα(t)σα, (3)

where the time-dependent eigenvalues are given by

λα(t) =
3∑

β=0

Hαβ pβ(t), (4)

with Hαβ being the Hadamard matrix

H =
⎛⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞⎟⎠ . (5)

Note that λ0(t) = 1 and |λk(t)| � 1 for k = 1,2,3. It is therefore
clear that

Lt(σα) = μα(t)σα, (6)

where

μα(t) = λ̇α(t)

λα(t)
, (7)

and hence in particular μ0(t) = 0 due to λ0(t) = 1. Introducing

γα(t) = 1

4

3∑
β=0

Hαβμβ(t), (8)

the local generator Lt is given by

Lt(ρ) =
3∑

α=0

γα(t)σαρσα. (9)

Finally, observing that

3∑
α=0

γα(t) = 1

4

3∑
α,β=0

Hαβμβ(t) = μ0(t) = 0,

one arrives at the standard form

Lt(ρ) =
3∑

k=1

γk(t)(σkρσk − ρ). (10)

Hence

Proposition 1. The random unitary dynamics (2) is Markovian (i.e. Λt

is divisible) iff

γ1(t) � 0, γ2(t) � 0, γ3(t) � 0, (11)

for all t � 0.

Note, that (11) yields highly nontrivial conditions for probability
distribution pα(t):

3∑
β=0

Hkβ

{ ∑3
ν=0 Hβν ṗν(t)∑3
σ=0 Hβσ pσ (t)

}
� 0, (12)

for k = 1,2,3 and t � 0. The inverse relations yield

p0(t) = 1

4

[
1 + A12(t) + A13(t) + A23(t)

]
,

p1(t) = 1

4

[
1 − A12(t) − A13(t) + A23(t)

]
,

p2(t) = 1

4

[
1 − A12(t) + A13(t) − A23(t)

]
,

p3(t) = 1

4

[
1 + A12(t) − A13(t) − A23(t)

]
,

where Aij(t) = e−2[Γi(t)+Γ j(t)] and we introduced

Γk(t) =
t∫

0

γk(τ )dτ .

Let us recall [26] that if Λt is Markovian then

d

dt

∥∥Λt(X)
∥∥

1 � 0, (13)

for all Hermitian X . Taking X = σk one obtains

d

dt

∥∥Λt(σk)
∥∥

1 = d

dt

∣∣λk(t)
∣∣‖σk‖1 � 0, (14)

and hence Markovianity of random unitary evolution (2) implies

d

dt

∣∣λk(t)
∣∣ � 0, (15)

for k = 1,2,3. One easily finds the following relations

λ1(t) = e−2[Γ2(t)+Γ3(t)],

λ2(t) = e−2[Γ1(t)+Γ3(t)],

λ3(t) = e−2[Γ1(t)+Γ2(t)],

and hence (15) implies

γ1(t) + γ2(t) � 0,

γ1(t) + γ3(t) � 0,

γ2(t) + γ3(t) � 0, (16)

for all t � 0. We stress that the above conditions are only neces-
sary but not sufficient for Markovianity: (11) imply (16) but the
converse is of course not true.

Now comes our main result:

Proposition 2. The random unitary dynamics (2) satisfies σ(ρ1,ρ2;
t) � 0 if and only if conditions (16) are satisfied.

Proof. Let us consider ‖�t‖1, where �t = Λt(�) and � = ρ1 −ρ2.
Since � is traceless one has � = ∑3

k=1 xkσk with real xk . Note
that �2 = (

∑3
k=1 x2

k )I. Now, Λt(�) = ∑3
k=1 λk(t)xkσk is traceless

as well, and hence∥∥Λt(�)
∥∥

1 = Tr
√[

Λt(�)
]2 = Tr

[
ξ(t)I

] = 2ξ(t), (17)
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