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Negative refraction and positive refraction are not Lorentz covariant
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Refraction into a half-space occupied by a pseudochiral omega material moving at constant velocity was
studied by directly implementing the Lorentz transformations of electric and magnetic fields. Numerical
studies revealed that negative refraction, negative phase velocity and counterposition are not Lorentz-
covariant phenomenons in general.
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1. Introduction

The behavior of plane waves at a planar interface between
two disparate homogeneous mediums is a central topic in both
fundamental and applied electrodynamics. In particular, the phe-
nomenon of negative refraction [1–3] has been the subject of
intense research efforts for the past ten years, following experi-
mental reports of this phenomenon in certain metamaterials [4,5].
Much of this effort has been motivated by the development of
novel metamaterials, but negative refraction also arises in cer-
tain minerals [6] and in biological structures [7]. In addition, the
prospects of negative refraction arising in relativistic scenarios —
such as in uniformly moving materials [8,9] or in strong gravita-
tional fields [10–13] — is a matter of astrophysical and astronomi-
cal significance.

In the following we consider negative refraction induced by
uniform motion. Earlier work relating to this topic relied on the
Minkowski constitutive relations to describe the moving medium
in a nonco-moving inertial reference frame [14–16], per the stan-
dard textbook approach [17]. However, this approach is only ap-
propriate to materials which are both spatially and temporally
local [18]. More recently, studies based on the uniform motion
of realistic materials have been undertaken, using an approach in
which the Lorentz transformations of the electric and magnetic
fields are directly implemented [8,9]. These studies revealed that
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the phenomenons of negative phase velocity and counterposition1

— which are closely allied to negative refraction and similarly asso-
ciated with certain metamaterials and relativistic scenarios — are
not Lorentz covariant. Here we address the hitherto outstanding
question: is negative (or positive) refraction Lorentz covariant? By
means of a numerical analysis based on a uniformly moving pseu-
dochiral omega material, we demonstrate that the answer to this
question is ‘no’.

In the notation we adopt, 3-vectors are in boldface with the ˆ
symbol denoting a unit vector. Double underlining signifies a 3 × 3
dyadic (i.e., a second rank Cartesian tensor) and the identity 3 × 3
dyadic is written as I = x̂x̂ + ŷŷ + ẑẑ. The operators Re and Im
deliver the real and imaginary parts of complex quantities; and
i = √−1. The permittivity and permeability of free space are ε0
and μ0, respectively, with c0 = 1/

√
ε0μ0 being the speed of light

in free space.

2. Refraction into a moving pseudochiral omega material

2.1. Planewave analysis

Our attention is focused on a spatially local, homogeneous ma-
terial, characterized by the frequency-domain constitutive relations

D′ = ε′ • E′ + ξ ′ • H′

B′ = ζ ′ • E′ + μ′ • H′

}
(1)

1 See Section 2.2 for definitions of negative refraction, negative phase velocity and
counterposition.
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in the inertial reference frame Σ ′ . Herein, the 3 × 3 constitutive
dyadics

ε′ = ε0

⎛
⎝ ε′

x 0 0
0 ε′

y 0
0 0 ε′

z

⎞
⎠ , ξ ′ = 1

c0

⎛
⎝ 0 0 0

0 0 0
0 −iξ ′ 0

⎞
⎠ ,

ζ ′ = 1

c0

⎛
⎝ 0 0 0

0 0 iξ ′
0 0 0

⎞
⎠ , μ′ = μ0

⎛
⎝ μ′

x 0 0
0 μ′

y 0
0 0 μ′

z

⎞
⎠ . (2)

This is a bianisotropic, Lorentz-reciprocal [19] material, known as a
pseudochiral omega material [20]. Constitutive relations of this form
have been used to describe certain negatively refracting metama-
terials, assembled from layers of split-ring resonators [21]. Several
different designs of metamaterials are based on this general config-
uration [22–24]. As the pseudochiral omega material is presumed
to be dissipative, the constitutive parameters ε′

x,y,z , ξ ′ and μ′
x,y,z

are complex-valued functions of the angular frequency ω′ .
Suppose that the pseudochiral omega material fills the half-

space z > 0, while the half-space z < 0 is vacuous. The inertial
reference frame Σ ′ translates at constant velocity v = vv̂ with
respect to the inertial reference frame Σ , in the plane of the inter-
face z = 0. In keeping with an earlier study [9], we take v̂ = x̂. The
Lorentz transformations [17]

E = (E′ • v̂)v̂ + γ
[(

I − v̂v̂
) • E′ − v × B′]

B = (B′ • v̂)v̂ + γ

[(
I − v̂v̂

) • B′ + v × E′

c2
0

]
H = (H′ • v̂)v̂ + γ

[(
I − v̂v̂

) • H′ + v × D′]
D = (D′ • v̂)v̂ + γ

[(
I − v̂v̂

) • D′ − v × H′

c2
0

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (3)

with the real-valued scalars

γ = 1√
1 − β2

, β = v

c0
, (4)

relate the electromagnetic field phasors in the frame Σ to those in
the frame Σ ′ .

Now suppose that the vacuous half-space z < 0 contains a
line source, which is stationary with respect to the frame Σ . The
source extends infinitely in directions parallel to the y axis, and
it is located at a great distance from the interface z = 0. Let us
consider one plane wave incident on the interface z = 0, as a rep-
resentative of the angular spectrum of plane waves launched by
the source. With respect to the frame Σ , this plane wave is de-
scribed by the electric and magnetic field phasors

Ei = ei exp
[
i(ki · r − ωt)

]
Hi = hi exp

[
i(ki · r − ωt)

]
}

, z � 0. (5)

Herein, the wavevector

ki = κ x̂ + k0 cos θ ẑ, (6)

with the real-valued scalar

κ = k0 sin θ ∈ (−k0,k0), (7)

the free-space wavenumber k0 = ω
√

ε0μ0 and ω being the angular
frequency with respect to Σ .

With respect to the frame Σ ′ , the incident plane wave is rep-
resented by

E′
i = e′

i exp
[
i
(
k′

i · r′ − ω′t′)]
H′

i = h′
i exp

[
i
(
k′

i · r′ − ω′t′)]
}

, z � 0, (8)

wherein the phasor amplitudes {e′
i,h′

i} are related to {ei,hi} via
the Lorentz transformations (3), while

ki = γ

(
k′

i • v̂ + ω′v
c2

0

)
v̂ + (

I − v̂v̂
) • k′

i

r = [
I + (γ − 1)v̂v̂

] • r′ + γ vt′

ω = γ
(
ω′ + k′

i • v
)

t = γ

(
t′ + v • r′

c2
0

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (9)

The incident plane wave gives rise to two refracted plane waves
in the half-space z > 0, and one reflected plane wave in the half-
space z < 0. In the frame Σ ′ , the refracted plane waves are repre-
sented by the electric and magnetic phasors

E′
t = e′

t j exp
[
i
(
k′

t j · r′ − ω′t′)]
H′

t = h′
t j exp

[
i
(
k′

t j · r′ − ω′t′)]
}

, z � 0 ( j = 1,2), (10)

wherein the wavevectors

k′
t j = (

k′
i • x̂

)
x̂ + k′

zj ẑ ( j = 1,2) (11)

comply with Snel’s law [17]. The wavevector components k′
zj , as

well as the relationships between the phasor amplitudes e′
t j and

h′
t j , are deduced by combining the constitutive relations (1) with

the source-free Maxwell curl postulates in Σ ′ [17]. We find [25]

k′
z1 = ω′√ε0μ0

√
μ′

x

(
ε′

y − (k′
i • x̂)2

ω′2ε0μ0μ
′
z

)

k′
z2 = ω′√ε0μ0

√
ε′

x

ε′
z

[(
ε′

zμ
′
y − ξ ′2

) − (k′
i • x̂)2

ω′2ε0μ0

]
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (12)

Notice that since k′
zj are generally complex-valued, the refracted

plane waves are nonuniform.
The reflected plane wave is represented by the electric and

magnetic phasors

E′
r = e′

r exp
[
i
(
k′

r · r′ − ω′t′)]
H′

r = h′
r exp

[
i
(
k′

r · r′ − ω′t′)]
}

, z � 0, (13)

in the frame Σ ′ , with the wavevector of the reflected plane wave
being

k′
r = (

k′
i • x̂

)
x̂ − k′

zr ẑ. (14)

The source-free Maxwell curl postulates in Σ ′ yield an expression
for k′

zr and relationships between the phasor amplitudes e′
r and h′

r .
By invoking the standard boundary conditions across the plane

z = 0, i.e., [17](
e′

i + e′
r

) · x̂ = e′
t j · x̂

(
e′

i + e′
r

) · ŷ = e′
t j · ŷ(

h′
i + h′

r

) · x̂ = h′
t j · x̂

(
h′

i + h′
r

) · ŷ = h′
t j · ŷ

}
,

z = 0 ( j = 1,2), (15)

the phasor amplitudes {e′
r,h′

r} and {e′
t j,h′

t j} can be found. The re-
flected and the refracted plane waves in the frame Σ may then be
deduced by applying the Lorentz transformations (3) and (9).

We represent the refracted plane wave in the frame Σ by the
electric and magnetic field phasors

Et = et j exp
[
i(kt j · r − ωt)

]
Ht = ht j exp

[
i(kt j · r − ωt)

]
}

, z � 0 ( j = 1,2), (16)

wherein the wavevectors

kt j = κ x̂ + kzj ẑ ( j = 1,2), (17)
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