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This Letter focuses on studying generalized Euler–Lagrange equation and Hamiltonian framework from
nonlocal-in-time kinetic energy of nonconservative system. According to Suykens’ approach, we extend
his results and formulate some work related to the nonconservative system. With the Lagrangian and
nonconservative force in nonlocal-in-time form, we obtain the higher order generalized Euler–Lagrange
equation which leads to an extension of Newton’s second law of motion. The Hamiltonian is studied in
relation to the Lagrangian in the canonical phase space. Finally, the particle with nonconservative force
case is studied and compared with quantum mechanical results. The extended equation gives a possible
approach for understanding the connection between classical and quantum mechanics.

© 2009 Published by Elsevier B.V.

1. Introduction

Nonlocal-in-time is the space–time noncommutative theory.
Space–time noncommutative field theories have peculiar proper-
ties. Gomis and his partners did a lot of related work in Refs. [1–3],
and they got some good results such as the Hamiltonian formalism
for space–time noncommutative theories and physical degrees of
freedom of nonlocal theories. The nonlocality of finite extent was
got by Woodard in Ref. [4]. Llosa [5] gave the Hamiltonian formal-
ism for nonlocal theories.

Apart from these, Feynman [6] noted that the kinetic energy
functional can be written as 1

2
(xk+1−xk)

ε
(xk−xk−1)

ε with the position
measurements of coordinates x at successive time ti+1 = ti + ε.
From Feynman’s conclusion, Suykens [7] started from a classical
Newtonian mechanics and plugged in a nonlocal-in-time kinetic
energy instead of the standard kinetic energy, and he got modi-
fication to Newtonian mechanics that could explain the quantum
phenomena for the free particle case and harmonic oscillator case,
but not in general. In this Letter, we will take Suykens’ approach
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to extend the result from conservative system to nonconservative
system and find the difference between these two systems.

As remarked in [7], the kinetic energy and the nonconserva-
tive force are obtained in nonlocal form of the nonconservative
system. Based on these results, we study the higher order general-
ized Euler–Lagrange equation which are shown to an extension to
the classical Newton’s law of motion. The Lagrangian that we gain
is singular. Following Suykens [7], in order to connect to the Os-
trogradski Hamiltonian [8] of the nonconservative system, we ex-
plain the (1 + 1)-dimensional formalism of nonlocal theories [1–3],
which has two time coordinates with one local and one nonlocal.
It can be considered as a generalization to the Ostrogradski for-
malism for the case of infinite derivative theories. Compared with
quantum mechanics, the particle case with nonconservative force
is given to gain further insight into the role of the nonlocality time
extent.

This Letter is organized as follows. In Section 2 we study the
idea of nonlocal-in-time kinetic energy and nonconservative force.
In Section 3 we get the higher order Euler–Lagrange equation for
the finite number of derivatives of nonconservative system. In Sec-
tion 4, the regularization to the singular Lagrangian is made. In
Section 5, the singular Lagrangian is connected to the Ostrogradski
Hamiltonian. In Section 6 we discuss the Hamiltonian and noncon-
servative force in the (1 + 1)-dimensional field theory of nonlocal
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theory. In Section 7, the Hamiltonian in nonsingular higher order
derivatives form is studied. Finally a simple example will be given.

2. The kinetic energy and nonconservative force in the
nonlocal-in-time form

We study the system which subjects to the nonconservative
force N . For a nonconservative force, the work done in going from
A to B depends on the path taken, such as friction, fluid resistance
and air drag. We use a special nonconservative force N = q̇2, which
has the same functional form with the kinetic energy. The Hamilto-
nian action function is defined by S = ∫ t2

t1
L dt where L = T − V de-

notes the Lagrangian containing the kinetic energy term T = 1
2 mq̇2

and the potential energy term V = V (q).
Instead of considering the standard form of kinetic energy, we

use the generalized coordinates and treat the kinetic energy in
nonlocal-in-time form [7] as:

Tε = 1

2
mq̇(t)

1

2

[
q̇(t + ε) + q̇(t − ε)

]
. (1)

We take the Taylor approximations

q(t + ε) ≈ q(t) + εq̇(t) + ε2

2! q̈(t) + · · · + εn

n! q(n)(t),

q(t − ε) ≈ q(t) − εq̇(t) + ε2

2! q̈(t) + · · · + (−1)n εn

n! q(n)(t), (2)

where q(n)(t) denote the nth order time-derivatives and ε is a
small positive constant and ε � t . The interpretation of ε is here
only considered at the mathematical level, and Suykens [7] gave
the interpretation of the ε at the physical level.

According to [7], one gets the nonlocal-in-time kinetic energy
based on the nth Taylor approximations:

Tε,n = 1

2
mq̇

1

2

[
q̇ +

n∑
k=1

εk

k! q(k+1) + q̇ +
n∑

k=1

(−1)k εk

k! q(k+1)

]
. (3)

In this way, the kinetic energy becomes

Tε,n = 1

2
mq̇2 + 1

4
mq̇

[
n∑

k=1

(
1 + (−1)k)εk

k! q(k+1)

]
(4)

and we define ak as ak = 1 + (−1)k , then

Tε,n = T + 1

4
mq̇

[
n∑

k=1

ak
εk

k! q(k+1)

]
. (5)

With the special case n = 1, Tε,n = T , and n = 2, Tε,2 = 1
2 mq̇2 +

1
4 mε2q̇q(3) , we denote Lε,n = Tε,n − V .

Using the same methods, we get the nonconservative force N =
q̇2 in the nonlocal-in-time form:

Nε,n = q̇
1

2

[
q̇(t + ε) + q̇(t − ε)

]
(6)

and q̇ is the generalized velocity. So we get the nonconservative
force based on nth Taylor approximations:

Nε−n = q̇
1

2

[
q̇ +

n∑
k=1

εk

k! q(k+1) + q̇ +
n∑

k=1

(−1)k εk

k! q(k+1)

]

= q̇2 + 1

2
q̇

n∑
k=1

ak
εk

k! q(k+1), (7)

where ak were defined before. The nonconservative force is got
with the special case n = 1, Nε,1 = N and n = 2, Nε,2 = N +
1
2 ε2q̇q(3) .

3. Higher order generalized Euler–Lagrange equation of
nonconservative system

The Lagrangian Lε,n = Tε,n − V contains the higher order
derivatives with Lε,n(q, q̇, q̈, . . . ,q(Y)), and the nonconservative
force Nε,n also contains the higher order derivatives with Nε,n =
Nε,n(t,q, q̇, q̈, . . . ,q(Y)), where Y = n + 1 denotes the order of the
Lagrangian. Note that in relation to a Hamiltonian framework, one
can consider the generalized coordinates qm(t) that qm = q̇m−1 and
m = 1,2, . . . ,Y − 1.

According to [9], the higher order generalized Euler–Lagrange
equation of nonconservative system is:

Y∑
j=0

(−1) j d j

dt j

∂Lε,n

∂q( j)
+ Nε,n = 0. (8)

One has

∂Lε,n

∂q(0)
= −∂V

∂q
= F , (9)

where F is the conservative force. From Eq. (5), we can get

∂Lε,n

∂q̇
= mq̇ + 1

4
m

n∑
k=1

ak
εk

k! q(k+1), (10)

which gives

d

dt

∂Lε,n

∂q̇
= mq̈ + 1

4
m

n∑
k=1

ak
εk

k! q(k+2). (11)

For j � 2, we can get

Y∑
j=2

(−1) j d j

dt j

∂Lε,n

∂q( j)
=

Y−1∑
k=1

(−1)k+1 dk+1

dtk+1

∂Lε,n

∂q(k+1)

=
Y−1∑
k=1

(−1)k+1 1

4
mak

εk

k! q(k+2). (12)

Together with Eq. (8), we get the following result:

Nε,n + F − mq̈ − 1

4
m

n∑
k=1

ak
εk

k! q(k+2)

+ 1

4
m

n∑
k=1

(−1)k+1ak
εk

k! q(k+2) = 0. (13)

From Eq. (7), we can get Eq. (13) as follows:

F − mq̈ − m
n∑

k=1

bk
εk

k! q(k+2) + q̇2 + 1

2
q̇

[
n∑

k=1

ak
εk

k! q(k+1)

]
= 0,

(14)

where bk = 1
4 (1 − (−1)k+1)ak , and bk = 1, ak = 2 when k is even

or bk = 0, ak = 0 when k is odd.
So for n the generalized Euler–Lagrange equation of nonconser-

vative system is

F − mq̈ − m
n/2∑
k=1

ε2k

(2k)!q(2k+2) + q̇2 + q̇

[ n/2∑
k=1

ε2k

(2k)!q(2k+1)

]
= 0,

(15)

where only the even derivatives terms remain. For ε = 0, we obtain
the equation of motion:

F − mq̈ + q̇2 = 0, (16)
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