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The existing adaptive synchronization technique based on the stability theory and invariance principle of
dynamical systems, though theoretically proved to be valid for parameters identification in specific mod-
els, is always showing slow convergence rate and even failed in practice when the number of parameters
becomes large. Here, for parameters update, a novel nonlinear adaptive rule is proposed to accelerate
the rate. Its feasibility is validated by analytical arguments as well as by specific parameters identifica-
tion in the Lotka–Volterra model with multiple species. Two adjustable factors in this rule influence the
identification accuracy, which means that a proper choice of these factors leads to an optimal perfor-
mance of this rule. In addition, a feasible method for avoiding the occurrence of the approximate linear
dependence among terms with parameters on the synchronized manifold is also proposed.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Based on intrinsic mechanisms extracted from experimental
studies, parameterized dynamical models can be specifically estab-
lished for various phenomena in many fields, ranging from physics
to engineering, from chemistry to biology and even neuroscience
[1–4]. The consequence of these mathematical modeling usually
invites two questions: “what kind of dynamics corresponding to
real phenomena will the models exhibit when a specific group
of parameters are taken?” and inversely, “how to accurately and
swiftly identify the parameters in the established models when
time series are experimentally obtained from real systems?”. Re-
searches on the first question usually involve qualitative analysis
of dynamical models and present systematic parameter regimes
of diverse bifurcations and even chaos. Investigations of the sec-
ond question have generated enormous literature on the technique
of parameters identification in various dynamical models. Rep-
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resentative examples include: least-squares fitting algorithm was
developed for parameters identification in the Hodgkin–Huxley
model [1]; evolution strategy with a fitness function was utilized
to estimate those parameters in the Purkinje Cells model [2,5];
neural networks learning technique was implemented to identify
the accurate form of models with or without time delays [6]; ex-
tended Kalman filter and the unscented Kalman filter were applied
to estimate the reaction rate in biochemical networks [7,8]. Apart
from techniques used in parameters identification for models with
known vector forms, rational or polynomial L2 approximation and
successive derivatives as embedding coordinates are managed to
reconstruct a standard system from scalar observable time series
in some typical systems [9,10] and some experimental cases [11]
where the vector forms are presumably unknown. However, the
aforementioned methods either involve optimization of higher di-
mensional penalized functions and can be complex to implement
in coping with real data, or require several approximations and
assumptions. Besides, the reconstructed vector forms of models,
relying critically on the implemented observable, are always lack
of truly physical or biological meanings [12].

Recently, various types of adaptive techniques based on syn-
chronization between two dynamical systems have been managed
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to realize parameters identification in various nonlinear systems,
such as the Lorenz-like systems, several well-known circuit sys-
tems, and the neural network systems with or without time de-
lays [13–28]. In comparison with the above-mentioned algorithms,
some adaptive techniques based on stability theory of dynamical
systems are exceptional: the computation of parameters demands
no CPU time or storage intensive arithmetics and may even be
adopted as a realtime algorithm [13,14]. Therefore, utilization of
adaptive technique to identify parameters in dynamical models is
of not only physical significance, but also of practical relevance.

Among all the adaptive techniques, the one, proposed in
[13,15,18] and then justified by virtue of the stability theory and
invariance principle of dynamical systems in [27], is very con-
venient for use and efficient. This technique, containing a linear
adaptive rule for parameters updating, does not involve the com-
putation of the derivative of the driving signals. Nevertheless, this
technique sometimes is not so practical as what was theoreti-
cally reported in the literature. For instance, the occurrence of the
approximate linear dependence (ALD) among terms with parame-
ters on synchronized manifold always leads to failed identification
when the adaptive technique is used [27]. Also, this technique can
perform very slowly and even failed identification as the number
of parameters becomes large and the length of the sampled time
series is finite. Therefore, swift and accurate identification of multi-
ple parameters in a finite time duration is vital to real application,
which requires improvement of the existing techniques.

In this Letter, in order to accelerate the convergence rate of pa-
rameters identification, we novelly design a nonlinear adaptive rule
for parameters updating instead of the conventional linear adaptive
rule. The new adaptive rule is verified to be theoretically sound.
It also has significant virtues compared to the conventional rule.
Interestingly, adjustable factors in the proposed rule can sensi-
tively determine the optimal convergence rate for concrete models,
which is illustrated by a representative example in this Letter. We
numerically show the robustness of the new rule against vari-
ous types of noises. Moreover, we propose a feasible method for
the avoidance of the above-mentioned ALD. This method, together
with the new rule, constitutes a systematic technique to identify a
large amount of parameters in real models.

2. Nonlinear adaptive rule

First, consider an n-dimensional dynamical model pending for
parameters identification in a general form of

ẋ = F (x,a), (1)

where the state variable x(t) = [x1(t), . . . , xn(t)]T is supposed to be
either a continuous driving signal or a discrete time series with a
sufficiently small sampling step. Generally, the vector field F (x,a),
describing the interactions among the state variables, can be mod-
eled by the knowledge from physical, chemical, and even bio-
logical theories and experiments. Representative models includes
the well-known Chua’s circuit [3], the Michaelis–Menten kinetics
of enzymatic reactions [4], the Lotka–Volterra models from both
ecology and economics [29], and so on. In such models, each com-
ponent of the vector field in (1) can be expressed particularly by

Fi(x,a) = ci(x) +
m∑

j=1

aij f i j(x), (2)

where a = {aij} ∈ U ⊂ R
n are (n × m) parameters to be identified

and U is some bounded set. ci(x) and f i j(x) are assumed to be
some real valued functions which are either globally Lipschitz or
homogenously polynomial with a degree no more than two with

respect to x. According to [27] and references therein, the response
system with the driving signal x(t) generated by (1) is:

ẏ = F (y,b) + ε · e + ω · e3, (3)

where the coupling terms obey the adaptive rules:

ε̇i = −rie
2
i , ω̇i = −sie

4
i . (4)

In particular, the nonlinear adaptive rule for parameters is de-
signed through

ḃi j = −δi j · gi(ei) · f i j(y). (5)

Here, the response signal, updated parameters, and updated gain
variables can be, respectively, written as y(t) = [y1(t), . . . , yn(t)]T,
b = {bij}, ε = [ε1, . . . , εn]T, and ω = [ω1, . . . ,ωn]T. The error dy-
namics e can be componentwise expressed by ei = yi − xi , and
the initial value for each ei is taken to be nonzero. Positive con-
stants ri , si and δi j , regarded as update rates, can be adjusted for
optimal performances in synchronization and parameters identifi-
cation. Each function gi(x), satisfying gi(0) = 0, is odd, bounded,
and monotonically increasing. For example, gi(x) can be taken as
the following sigmoidal function:

gi(x) = θi

1 + e−σi x
− θi

2
(6)

with two positive constants σi and θi . Note that the nonlinear
adaptive rule (5) degenerates to the linear rule discussed in [27],
when each gi(ei) is taken as a linear and unbounded function, i.e.
gi(ei) = ei . Also note that the degree of the polynomial function
in (2) can be greater than two and the vector field can be in a
more general form; however, additional coupling terms should be
implemented so as to guarantee the rigor of complete synchroniza-
tion and identification [27,28].

The remainder of this section focuses not only on analytically
validating the proposed nonlinear adaptive rule, but also on in-
tuitively elucidating why the proposed rule generically possesses
superiority in the convergence rate.

For the first aim, construct the following Lyapunov function
candidate:

Hu,M,N(e,ε,ω,b)

=
n∑

i=1

ei∫
0

gi(s)ds + 1

2

n∑
i=1

m∑
j=1

1

δi j
(bij − aij)

2

+ 1

2

n∑
i=1

u

ri
(εi + M)2 + 1

2

n∑
i=1

u

si
(ωi + N)2, (7)

where u, M and N are some positive constants pending for de-
termination. Generally, the signal x(t) of interest is oscillating or
chaotic sampled from nonlinear dynamical systems. Thus, x(t) is
reasonably assumed to be bounded, i.e., there exist a series of
bounded and closed intervals A = {Ai}n

i=1 such that each com-
ponent xi(t) ∈ Ai ⊂ R for all t ∈ [0,+∞). The following arguments
follow the main idea of the proofs in [27,28].

Define a metric D(s, Ai) = infq∈Ai |s − q| for any s ∈ R and any
interval Ai derived above. Select arbitrary y0 = [y0

1, . . . , y0
n]T ∈ R

n

and b0 = {b0
i j} ∈ R

n×m as the initial values of systems (3) and (5),
respectively. Then, set a constant as

p �
n∑

i=1

D(y0
i ,Ai)∫

0

gi(s)ds + 1

2

n∑
i=1

m∑
j=1

1

δi j

(
b0

i j − aij
)2

(8)

and construct a closed ball by
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