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We study the classical dynamics of the rare gas-dihalogen Ne· · ·Br2 complex in its ground electronic
state. By considering the dihalogen bond frozen at its equilibrium distance, the system has two degrees
of freedom and its potential energy surface presents linear and T-shape isomers. We find the nonlinear
normal modes of both isomers that determine the phase space structure of the system. By means of
surfaces of section and applying the numerical continuation of families of periodic orbits, we detect and
identify the different bifurcations suffered by the normal modes as a function of the system energy.
Finally, using the Orthogonal Fast Lyapunov Indicator (OFLI), we study the evolution of the fraction of the
phase space volume occupied by regular motions.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that nonlinear classical and semiclassical me-
chanics have proven to be very useful for interpreting the quantum
dynamics of real atomic and molecular systems, even when the
classical dynamics is chaotic and the quantum dynamics is strongly
mixed [1]. Due to the simplicity of the model, the hydrogen atom
in the presence of external fields is the keystone system on which
all nonlinear classical tools have been successfully applied [2]. In
particular, the studies of the periodic orbits and the correspond-
ing phase space structure provide a very useful information that
can be compared with the behavior of the corresponding quantum
system and with the experiments [1,3]. Since the pioneering work
of Gutzwiller [4], many authors (see, e.g., Ref. [5] and references
therein) have stated a clear relation between classical periodic or-
bits and quantum eigenfunctions.

In relation to molecules, and in spite of the difficulties of
dealing with in general more complex systems, a wide variety
of molecular systems have been studied by using periodic orbit
theory. In this sense, among a plethora of works, we refer the
reader to those of Efstathiou and Contopoulos [6], Farantos [7] and
Ezra [8].

A nice example where classical dynamics is playing an impor-
tant role are the rare gas-dihalogen van der Walls molecules. These
molecules are simple systems where several phenomena can be
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studied by combining classical and quantal studies. In particular,
much effort has been paid to the study of the vibrational predis-
sociation [9,10] and photodissociation [11] of these molecules. In
these processes, nonlinear dynamics is particularly useful to un-
derstand the decay of the complex due to the energy transfer from
the dihalogen bond to the weak van der Waals bond. However,
not much attention has been paid to the vibrational dynamics of
the rare gas around the dihalogen dimer. With this kind of study,
widely applied in the LiCN and HCP molecules [12], it is possible
to determine the structure of the phase space. As it is well known,
periodic orbits are the backbone of the phase space. Moreover, they
play an important role because they are essential to understand
some quantum features as the localization of quantum states along
unstable periodic orbits [13].

With this in mind, here we focus on the evolution of the phase
space structure of one of these rare gas-dihalogen complexes: the
Ne· · ·Br2 complex in the ground electronic state. This study is
based on a systematic searching of periodic orbits by using nu-
merical continuation of families of periodic orbits. The Letter is
organized as follows. In Section 2 we describe the potential energy
surface and the Hamiltonian we used in the study. We find the
basic periodic orbits (normal modes) that determine the funda-
mental phase space structure in Section 3. In Section 4 we detect
and classify by numerical continuation the different bifurcations
that determine the evolution of the phase space. In Section 5 we
study the evolution of the fraction of the phase space volume oc-
cupied by regular motions as a function of the energy. Finally, in
Section 6 the main results are summarized.
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Fig. 1. Equipotential curves of the potential energy surface V (R, θ, re).

2. The Hamiltonian

We consider the motion of a Ne atom around a Br2 molecule
which bond coordinate r is frozen at its equilibrium distance re ≈
2.281 Å. By considering that the total angular momentum of the
molecule is zero, the dynamics of the Ne atom around the Br2
dimer is described by the two-dimensional Hamiltonian [14]

H = P 2
R

2μ2
+ 1

2

(
1

μ2 R2
+ 1

μ1r2
e

)
P 2

θ + V (R, θ, re). (1)

In Hamiltonian (1), R is the distance of the Ne atom to the Br–
Br center of mass, θ is the angle between R and re , (P R , Pθ ) are
the canonical momenta conjugated of R and θ and μ−1

1 = m−1
Br +

m−1
Br and μ−1

2 = m−1
Ne + (2mBr)

−1 are the diatomic and triatomic
reduced masses. Finally, V (R, θ, re) is the potential energy surface
describing the interaction of the Ne atom with the Br2 molecule.
Throughout the Letter atomic units are used.

In order to perform classical calculations, an analytical potential
energy surface (PES) is the most suitable choice. We built the PES
from the ab initio data calculated in [10]. Using these data and
following the collocation procedure also reported in Ref. [10], an
expansion in Legendre polynomials Pλ(cos θ) allows one to write
the PES as
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× Pλ(cos θ), λ = 0,2,4,6,8, (2)

where the parameters are listed in Table II of Ref. [10]. Note that
as for λ = 0,2,4,6,8 the Legendre polynomials are periodic func-
tions of period π , the potential energy surface V (R, θ, re) and the
Hamiltonian H are also periodic functions of the same period in
the θ angle.

In Fig. 1 the equipotential curves of (2) are shown. At R =
8.479433 a.u. and θ = 0 and θ = π the PES has two equivalent
minima P L of energy EL = −0.000427 a.u. These minima corre-
spond to the linear isomer of the molecule. At R = 6.798360 a.u.
and θ = π/2 and θ = 3π/2 the potential energy surface V (R, θ, re)

presents two additional minima P T of ET = −0.000388 a.u. which
correspond to the so-called T-shape isomer. The linear and T-shape
potential wells are kept apart by a separatrix passing through
four saddle points P S of energy E S = −0.000219 a.u. located at

R = 8.383587 a.u. and θ = 0.876222, θ = 2.265371, θ = 4.017815
and θ = 5.406964.

From the shape of V (R, θ, re) we deduce that the Ne atom can
move in different regions of motion. There is one region of rota-
tional orbits for energies above the isomerization barrier E S and
four regions of vibrational orbits for energies below E S . When the
energy E of the atom is below E S , the atom is in a vibrational
mode because it is always confined inside one of the four poten-
tial wells. In other words, the Ne atom is mainly aligned along the
linear or the T-shape configurations and cannot reach large values
of R . When in a rotational mode (energy bigger than the isomer-
ization barrier E S ), the atom can travel from one potential well
to other and, depending on the energy and initial conditions, can
reach large values of R .

The Hamiltonian equations of motion read

θ̇ =
(

1

μ2 R2
+ 1

μ1r2
e

)
Pθ ,

Ṗθ = −∂V (R, θ, re)

∂θ
,

Ṙ = P R

μ2
,

Ṗ R = P 2
θ

μ2 R3
− ∂V (R, θ, re)

∂ R
. (3)

The equilibrium points of the above Hamiltonian flow are the crit-
ical points of the PES V (R, θ, re) together with the conditions
P R = Pθ = 0. Moreover, if we consider initial conditions Pθ = 0
and θ = 0, π/2, π or 3π/2 it is straightforward to see that in the
above equations we obtain θ̇ = Ṗθ = 0, which corresponds to pure
analytic vibrational rectilinear periodic orbits passing through each
of the critical points P L and P T of V (R, θ, re). We name these rec-
tilinear orbits as L1 and T1, respectively.

3. Phase space structure

The computation of Poincaré surfaces of section is a common
way to illustrate the structure and evolution of the phase space of
a two-degrees Hamiltonian dynamical system. The construction of
a surface of section is a delicate task because it should be trans-
verse to the flow [15]. In our problem a good choice is to define
the surfaces of section as the intersection of the phase trajecto-
ries with the (θ, Pθ ) plane for P R = 0. We choose this surface of
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