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Properties of the phase space of the standard map with memory are investigated. This map was obtained
from a kicked fractional differential equation. Depending on the value of the map parameter and the
fractional order of the derivative in the original differential equation, this nonlinear dynamical system
demonstrates attractors (fixed points, stable periodic trajectories, slow converging and slow diverging
trajectories, ballistic trajectories, and fractal-like structures) and/or chaotic trajectories. At least one type
of fractal-like sticky attractors in the chaotic sea was observed.
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1. Introduction

The standard map (SM) can be derived from the differential
equation describing kicked rotator. The description of many physi-
cal systems and effects (Fermi acceleration, comet dynamics, etc.)
can be reduced to the studying of the SM [1]. The SM provides the
simplest model of the universal generic area preserving map and it
is one of the most widely studied maps. The topics examined in-
clude fixed points, elementary structures of islands and a chaotic
sea, and fractional kinetics [1–3].

It was recently realized that many physical systems, includ-
ing systems of oscillators with long range interaction [4,5], non-
Markovian systems with memory ([6, Chapter 10], [7–11]), fractal
media [12], etc., can be described by the fractional differential
equations (FDE) [6,13,14]. As with the usual differential equations,
the reduction of FDEs to the corresponding maps can provide a
valuable tool for the analysis of the properties of the original sys-
tems. As in the case of the SM, the fractional standard map (FSM),
derived in [15] from the fractional differential equation describing
a kicked system, is perhaps the best candidate to start a general in-
vestigation of the properties of maps which can be obtained from
FDEs.
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As it was shown in [15], maps that can be derived from FDEs
are of the type of discrete maps with memory. One-dimensional
maps with memory, in which the present state of evolution de-
pends on all past states, were studied previously in [16–21]. They
were not derived from differential equations. Most results were ob-
tained for the generalizations of the logistic map.

In the physical systems the transition from integer order time
derivatives to fractional (of a lesser order) introduces additional
damping and is similar in appearance to additional friction [6,22].
Accordingly, in the case of the FSM we may expect transformation
of the islands of stability and the accelerator mode islands into at-
tractors (points, attracting trajectories, strange attractors). Because
the damping in systems with fractional derivatives is based on the
internal causes different from the external forces of friction [22,
23], the corresponding attractors are also different from the attrac-
tors of the regular systems with friction and are called fractional
attractors [22]. Even in one-dimensional cases [16–21] most of the
results were obtained numerically. An additional dimension makes
the problem even more complex and most of the results in the
present Letter were obtained numerically.

2. FSM, initial conditions

The standard map in the form

pn+1 = pn − K sin xn,

xn+1 = xn + pn+1 (mod 2π) (1)
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can be derived from the differential equation

ẍ + K sin(x)
∞∑

n=0

δ

(
t

T
− n

)
= 0. (2)

By replacing the second-order time derivative in Eq. (2) with
the Riemann–Liouville derivative 0 Dα

t one obtains a fractional
equation of motion in the form

0 Dα
t x + K sin(x)

∞∑
n=0

δ

(
t

T
− n

)
= 0 (1 < α � 2), (3)

where

0 Dα
t x(t) = Dm

t 0 Im−α
t x(t)

= 1

�(m − α)

dm

dtm

t∫
0

x(τ )dτ

(t − τ )α−m+1
(m − 1 < α � m),

(4)

Dm
t = dm/dtm , and 0 Iαt is a fractional integral. The initial conditions

for (3) are

(
0 Dα−1

t x
)
(0+) = p1,(

0 Dα−2
t x

)
(0+) = b. (5)

The Cauchy type problem (3) and (5) is equivalent to the Volterra
integral equation of the second kind [24–26]

x(t) = p1

�(α)
tα−1 + b

�(α − 1)
tα−2

− K

�(α)

t∫
0

sin[x(τ )]∑∞
n=0 δ( τ

T − n)dτ

(t − τ )1−α
. (6)

Defining the momentum as

p(t) = 0 Dα−1
t x(t), (7)

and performing integration in (6) one can derive the equation for
the FSM in the form (for the thorough derivation see [26])

pn+1 = pn − K sin xn, (8)

xn+1 = 1

�(α)

n∑
i=0

pi+1 Vα(n − i + 1)

+ b

�(α − 1)
(n + 1)α−2 (mod 2π), (9)

where

Vα(m) = mα−1 − (m − 1)α−1. (10)

Here it is assumed that T = 1 and 1 < α � 2. The form of Eq. (9)
which provides a more clear correspondence with the SM (α = 2)
in the case b = 0 is presented in Section 4 (Eq. (31)).

The second initial condition in (5) can be written as
(

0 Dα−2
t x

)
(0+) = lim

t→0+ 0 I2−α
t x(t)

= lim
t→0+

1

�(2 − α)

t∫
0

x(τ )dτ

(t − τ )α−1

= b (1 < α � 2), (11)

which requires b = 0 in order to have a solution bounded at t = 0
for α < 2. The assumption b = 0 leads to the FSM equations which

in the limiting case α = 2 coincide with the equations for the stan-
dard map under the condition x0 = 0.

In this Letter the FSM is taken in the form derived in [15] which
coincides with (8) and (9) if b = 0. It is also assumed that x0 = 0
and the results can be compared to those obtained for the SM with
x0 = 0 and arbitrary p0. As a test, for the SM and for the FSM with
α = 2 and the same initial conditions numerical calculations show
that phase portraits look identical.

System of Eqs. (8) and (9) can be considered either in a cylin-
drical phase space (x mod 2π ) or in unbounded phase space. The
second case is convenient to study transport. The trajectories in
the second case are easily related to the first case. The FSM has
no periodicity in p (the SM does) and cannot be considered on a
torus.

3. Stable fixed point

The SM has stable fixed points at (0,2πn) for K < Kc = 4. It is
easy to see that point (0,0) is also a fixed point for the FSM. Di-
rect computations using (8) and (9) demonstrate that for the small
initial values of p0 there is a clear transition from the convergence
to the fixed point to divergence when the value of the parameter
K crosses the curve K = Kc(α) on Fig. 1(a) from smaller to larger
values.

The following system describes the evolution of trajectories
near fixed point (0,0)

δpn+1 = δpn − Kδxn, (12)

δxn+1 = 1

�(α)

n∑
i=0

δpi+1 Vα(n − i + 1). (13)

The solution can be found in the form

δpn = p0

n−1∑
i=0

pn,i

(
2

Vαl

)i( Vαl K

2�(α)

)i

(n > 0), (14)

δxn = p0

�(α)

n−1∑
i=0

xn,i

(
2

Vαl

)i( Vαl K

2�(α)

)i

(n > 0). (15)

The origin of the terms in parentheses, as well as the definition

Vαl =
∞∑

k=1

(−1)k+1 Vα(k) (16)

will become clear in Section 5. Eqs. (12)–(16) lead to the following
iterative relationships

xn+1,i = −
n∑

m=i

(n − m + 1)α−1xm,i−1 (0 < i � n), (17)

pn+1,i = −
n∑

m=i

xm,i−1 (0 < i < n) (18)

with the initial and boundary conditions

pn+1,n = xn+1,n = (−1)n, pn+1,0 = 1,

xn+1,0 = (n + 1)α−1. (19)

From (17) and (18) it is clear that the series (14) and (15) are
alternating and it is natural to apply the Dirichlet’s test to verify
their convergence. This can be done by considering the totals

Sn =
n−1∑
i=0

xn,i

(
2

Vαl

)i

, (20)
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