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We investigate the dynamics of Bose–Einstein condensates in a quasi one-dimensional regime in a time-
dependent trap and show analytically that it is possible to observe matter wave interference patterns
in the intra-trap collision of two bright solitons by selectively tuning the trap frequency and scattering
length.
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1. Introduction

When a gas of massive bosons is cooled to a temperature very
close to absolute zero in an external potential, a large fraction of
the atoms collapse into the lowest quantum state of the external
potential forming a condensate known as a Bose–Einstein conden-
sate (BEC) [1–4]. Bose–Einstein condensation is an exotic quantum
phenomenon observed in dilute atomic gases and has made a huge
turnaround in the fields of atom optics and condensed matter
physics. The experimental realization of BECs in weakly interacting
gases [5] has really kickstarted the upsurge in this area of research
leading to flurry of activities in this direction while the observa-
tion of dark [6] and bright solitons [7], periodic waves [8], vortices
and necklaces [9] has given an impetus to the investigation of this
singular state of matter.

The dynamics of BECs is governed by an inhomogeneous non-
linear Schrödinger (NLS) equation called the Gross–Pitaevskii (GP)
equation and the behaviour of the condensates depends on the
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scattering length (binary interatomic interaction) and the trapping
potential. Eventhough the GP equation is in general nonintegrable,
it has been recently investigated for specific choices of scattering
lengths and trapping potentials using Darboux [10,11] and gauge
transformation approach [12–14].

It is known that a BEC comprises of coherent matter waves
analogous to coherent laser pulses and all the atoms are in phase.
In other words, the atoms occupy the same volume of space, move
at identical speeds, scatter light of the same color and so on.
Hence, it looked fundamentally impossible to distinguish them by
any measurement. This quantum degeneracy arising out of high
degree of coherence has been recently exploited in an experiment
by Andrews et al. [15] and Ketterle’s group [16] showing that when
two separate clouds of BECs overlap under free ballistic expansion,
the result is a fringe pattern of alternating constructive and de-
structive interference just as it occurs with two intersecting laser
beams. Javanainen et al. [17] have shown that when two inde-
pendent condensates are dropped on top of each other, one also
observes similar interference pattern with or without phase. In
other words, when BECs were made to collide upon release from
the trap, de Broglie wave interference pattern containing stripes
of high and low density were clearly observed. These experiments
which underlined the high degree of spatial coherence of BECs led
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to the creation of atom laser [18]. Can one observe the same mat-
ter wave interference pattern by allowing the bright solitons which
are condensates themselves to collide in a trap? Motivated by this
consideration, we investigate the collisional dynamics of conden-
sates in a time-dependent trapping potential.

2. Gross–Pitaevskii equation and Lax-pair

At the mean field level, the time evolution of macroscopic
wavefunction of BECs is governed by the Gross–Pitaevskii (GP)
equation,

ih̄
∂Ψ (�r, t)

∂t
=

(−h̄2

2m
∇2 + g

∣∣Ψ (�r, t)
∣∣2 + V

)
Ψ (�r, t) (1)

where Ψ (�r, t) represents the condensate wave function normal-
ized by the particle number N = ∫

dr|Ψ |2, g = 4π h̄2as(t)/m, V =
V 0 + V 1, V 0(x, y) = mω2⊥(x2 + y2)/2, V 1 = mω2

0(t)z2/2. In the
above equation, V 0 and V 1 represent atoms in a cylindrical trap
and time-dependent trap along z-direction respectively. The time-
dependent trap could be either confining or expulsive while the
time-dependent atomic scattering length as(t) can be either at-
tractive (as < 0) or repulsive (as > 0). As a result, the conden-
sates confront with both time-dependent scattering length and
time-dependent trapping potential [19]. Recent experiments have
demonstrated that variation of the effective scattering length by
even including its sign can be achieved by utilizing the so-called
Feshbach resonance [20].

Considering BECs as an assembly of weakly interacting atomic
gases and assuming that the transverse confinement is too tight to
allow scattering to the excited states of the harmonic trap in the
transverse direction under the constraint as N|Ψ |2 � 1 [21,22], we
have the following transformation
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2πaBa⊥

ψ
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Invoking the above transformation, the GP equation reduces to
the following form (in dimensionless units)

i
∂ψ

∂t
+ 1

2

∂2ψ

∂z2
+ γ (t)|ψ |2ψ − M(t)

2
z2ψ = 0 (3)

where γ (t) = −2as(t)/aB , M(t) = ω2
0(t)/ω2⊥ , aB is the Bohr radius,

M(t) describes time-dependent harmonic trap which can be either
confining (M(t) > 0) or expulsive (M(t) < 0). The dynamics of BECs
in the presence of a time-independent trapping potential (M(t) is a
constant) has already been investigated [10–12]. It should be men-
tioned that one cannot control the velocity of the solitons when
M(t) is a constant. Hence, to generate the bright solitons of Eq. (3)
for both regular and expulsive time-dependent potentials, we in-
troduce the following modified lens transformation [23] as

ψ(z, t) = √
A(t)Q (z, t)exp

(
iΦ(z, t)

)
(4)

where the phase has the following simple quadratic form

Φ(z, t) = −1

2
c(t)z2. (5)

Substituting the modified lens transformation given by Eq. (4)
in Eq. (3), we obtain the modified NLS equation

i Q t + 1

2
Q zz − ic(t)zQ z − ic(t)Q + γ (t)A(t)|Q |2 Q = 0, (6)

with

M(t) = c′(t) − c(t)2, (7)

and

c(t) = − d

dt
ln A(t). (8)

Eq. (6) admits the following linear eigenvalue problem
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In the above linear eigenvalue problem, the spectral parameter
which is complex is nonisospectral obeying the following equation

ζ ′(t) = c(t)ζ(t), ζ(t) = α(t) + iβ(t) (11)

with γ (t) = 1/A(t). It is obvious that the compatibility condition
(φz)t = (φt)z generates Eq. (6).

Substituting Eq. (8) with γ (t) = 1/A(t) in Eq. (7), we get

γ ′′(t)γ (t) − 2γ ′(t)2 − M(t)γ (t)2 = 0. (12)

Thus, the solvability of the GP Eq. (3) depends on the suitable
choices of scattering length γ (t) and the trap frequency M(t) con-
sistent with Eq. (12). It should be mentioned that the above inte-
grability condition can also be obtained by invoking the following
lens transformation ψ(Z , T ) = 1√

γ (t)l(t)
Φ(Z , T )exp(ic(t)z2), where

Z = z/l(t) and T = T (t) are new independent variables subject
to the constrains c′(t) + 2c(t)2 + M(t)/2 = 0, l′(t) − 2c(t)l(t) = 0,
T ′(t) − l(t)−2 = 0 and c(t) = − 1

2γ (t) γ
′(t) to convert the GP Eq. (3)

into the standard NLS equation, i.e., iΦT + 1
2 ΦZ Z +|Φ|2Φ = 0 [24].

On the other hand, we have transformed Eq. (3) by using the above
lens transformation with l(t) = 1 into modified NLS equation given
by Eq. (6) for the same independent variables (z, t) and obtained
the integrability condition (Eq. (12)) consistent with the Ref. [24].
We have then generated the Lax-pair of modified NLS equation.

It should also be mentioned at this juncture that the solution
of Eq. (12) which originates from the Riccati Eq. (7) is not unique
which means that this model is tailor made for realistic exper-
iments. Employing gauge transformation approach [25], one can
generate the bright soliton of Eq. (3) as,
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√

1
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2 c(t)z2+iξ1 (13)

where
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where φ1, δ1, α10 and β10 are arbitrary real constants. From
Eq. (13), one understands that the amplitude of the bright soli-
tons (which are condensates themselves) depends on the scatter-
ing length γ (t) and the time-dependent trap M(t) (β1(t) is related
to c(t) which in turn depends on M(t)) while the velocity is gov-
erned by the external trap M(t) alone. This gauge transformation
approach can be extended to generate multisoliton solutions.
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