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It is shown that the dispersion relation of heat waves along nanowires or thin layers could allow to
compare two different definitions of nonequilibrium temperature, since thermal waves are predicted to
propagate with different phase speed depending on the definition of nonequilibrium temperature being
used. The difference is small, but it could be in principle measurable in nanosystems, as for instance
nanowires and thin layers, in a given frequency range. Such an experiment could provide a deeper view
on the problem of the definition of temperature in nonequilibrium situations.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The meaning of temperature in nonequilibrium situations is
a fundamental open problem in nonequilibrium thermodynam-
ics and statistical physics [1–6]. This problem becomes especially
acute in nanosystems experiencing fast processes [7–9], because of
the relatively small number of particles involved and the influence
of fast variations. The latter have a practical motivation because
of the high frequencies at which are expected to work the minia-
turized devices in computers, for instance. In such systems, the
fundamental problem of the meaning of temperature may have
practical relevance in the interpretation of the experimental results
and, on the other side, it may find new experimental possibil-
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ities allowing to illustrate and measure the difference between
the classical definition of nonequilibrium temperature, based on
the local-equilibrium hypothesis [1,2,10], and a new definition of
a dynamical nonequilibrium temperature regarded as an internal
variable [11]. The aim of this Letter is precisely to point out a sit-
uation in which such a difference could be examined by means
of the dispersion relation of heat waves along nanowires and thin
layers, where the effects related to heat exchange between the sys-
tem and the medium become especially relevant.

Nowadays one-dimensional devices, such as nanowires and
nanotubes, have considerably attracted the attention in virtue of
their potential application in electronic and energy conversion de-
vices. Their behavior is strongly influenced by nonlocal and non-
linear effects [12–17], due to the fact that even a small difference
of temperature or electrical potential, over a small-scale length
may generate very high gradients [18–21]. The analysis of high-
frequency thermal waves and heat pulses in these systems requires
going beyond the classical Fourier law, which is restricted to rel-
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atively low frequencies, but predicts an infinite speed for heat
pulses and high-frequency waves, a result which is in contradic-
tion with the observations.

The so-called Maxwell–Cattaneo (or Maxwell–Cattaneo–Ver-
notte) equation [22], is the simplest transport equation leading
to a finite speed propagation of thermal waves. It reads [7–9,11,
22–24]

τ q̇ + q = −λ∇θ, (1)

where q is the heat flux, τ a suitable relaxation time, λ the ef-
fective heat conductivity, and θ the nonequilibrium temperature
defined through the differentiation of a suitable nonequilibrium
entropy, as the one used in Extended Irreversible Thermodynam-
ics [7,23] for instance. This will be discussed in more details in
Section 3. Moreover, in Eq. (1) the superposed dot means the ma-
terial time derivative which for a rigid body at rest, as the system
at hand is, reduces to the usual partial time derivative. It is worth
noticing that the equation above is not the most general one to
describe heat conduction in miniaturized systems. For instance,
Chen [15] has suggested to regard the transport of heat in nano-
size systems as a combination of the heat conduction described
by a kinetic equation (ballistic transport) superposed to the heat
conduction governed by the Cattaneo equation. The state variables
are thus the fields of the energy density and the heat flux, de-
scribing the overall Cattaneo heat conduction, and the one-phonon
distribution function describing the superposed on it ballistic com-
ponent. The thermodynamic compatibility of such an approach has
been investigated by Grmela et al. [25]. As the result, both the Cat-
taneo and the kinetic equations are modified by the appearance of
new terms in which their coupling is expressed. Here we limit our-
selves to those nonequilibrium situations which are well described
by Eq. (1) only. Note that in nanowires and thin layers, namely,
in systems where the radius or the width is of the order of the
mean-free path, both τ and λ are size dependent, and they show
a strong reduction as compared with bulk values [7,8,14–17]. How-
ever, the ratio λ/τ is expected to have only slight changes, except
in very thin systems where quantum confinement effects may be-
come relevant.

Here we will incorporate the thermal exchange across the
lateral walls of the system and we will explore how this ex-
change may allow to discriminate the description of heat transport
through Eq. (1), or through a different dynamical nonequilibrium
temperature.

2. Heat conduction and nonequilibrium temperatures

The evolution equation for θ in a cylinder of radius r, or equiv-
alently in a thin layer of thickness r, if they are not laterally iso-
lated, is

cθ̇ = −∇ · q − 2σ

r
(θ − θenv), (2)

with c as the specific heat per unit volume, and the second term
in the right-hand side representing the heat flux exchanged with
the surrounding environment across the lateral walls of the sys-
tem. It is in accordance with the Newton cooling law, being σ
a suitable heat exchange coefficient, and θenv the temperature of
the environment, which will be assumed to be constant and ho-
mogeneous. Furthermore, in Eq. (2) q stands for the longitudinal
heat flux along the length of the cylinder, or along the plane of
the thin layer. It is worth observing that for systems of macro-
scopic dimensions, a term like the last one on the right-hand side
of Eq. (2) could be incorporated in the description of heat trans-
port as a boundary condition in situations far from equilibrium.
Here we apply a different point of view, according to which, due

to the small dimensions of the system, not only the points of the
lateral mantle but any point undergoes heat exchanges with the
environment, whose rate depends on the difference of tempera-
ture, as expressed by the right-hand side of Eq. (2). In fact, Eq. (2)
assumes Newton law stating that the heat flux across the lateral
surface is qw = σ(θ − θenv). Since we are assuming in Eq. (1) that
the longitudinal heat flux q is not given by Fourier law but by the
Maxwell–Cattaneo one, incorporating relaxation effects, one could
ask why we have not generalized the Newton law in a similar way,
namely, assuming that τwq̇w + qw = σ(θ − θenv). The reason to
neglect τw in comparison with τ (characterizing the longitudinal
heat flux) is that the collision rate of phonons with the lateral sur-
face will be much higher than the collision rate between phonons
themselves. Indeed, if l is the mean-free path of heat carriers, r
the radius of the cylinder and c the average phonon speed, we
will have τw = r/c and τ = l/c, respectively. Since in nanotubes r
is smaller, or much smaller, than the phonon mean-free path, it
follows that τw may indeed be neglected in our approach. In con-
trast, for r longer than the mean-free path, τw should be taken
into account.

A second comment refers to the validity of a single relaxation
time τ in Eq. (1); in general, since there are several collision
processes (elastic phonon–phonon collisions, resistive or Umklapp
phonon–phonon collisions, phonon–impurity collisions, etc.) one
should take all these times into account. Here we assume that the
relaxation time τ used in Eq. (1) is given by the Matthiesen rule
[8,26], according to which the reciprocal of the effective collision
time is the sum of the reciprocal of the several collision times.

Combining Eqs. (1) and (2), if all material functions τ , c and σ
are supposed to be constant, one obtains

θ̈ +
(

1

τ
+ 1

τr

)
θ̇ = U 2

0∇2θ −
(

θ − θenv

ττr

)
, (3)

with

τr = rc

2σ
, (4)

as the relaxation time due to the lateral dispersion of heat, and

U0 =
√

λ

cτ
, (5)

as the speed of a thermal wave traveling through an equilibrium
state. Note that τr expresses the time-lag due to the heat exchange
of the lateral mantle only, but it is not related to phonons col-
lisions processes, which have been all incorporated in τ . We see
from Eq. (3) that, due to the small thickness of the conductor, the
lateral dispersion introduces a competitive time scale, which influ-
ences the evolution of θ . In the limits of high radius, (r → ∞), or
isolated wire, (σ = 0), namely, as τr → ∞, Eq. (3) reduces to the
classical telegraph equation arising in Maxwell–Cattaneo–Vernotte
theory.

In Fig. 1 we plot at different scales the ratio τ/τr in a silicon
nanowire, as a function of the temperature, for two different values
of the radius. We see that in the range of temperatures from 100 K
to 300 K, τ is of the order of 10−5τr . Hence, in Eq. (3) the term
θ̇/τ is predominant with respect to θ̇/τr . In the range from 30 K
to 100 K, instead, τ may be of the order of 10−3τr , so that the
influence of θ̇/τr on the solution of Eq. (3) may be relevant.

Let us put our attention now on the propagation of plane
temperature-waves

θ(x; t) = θ0 exp
[
i(ωt − κx)

]
, (6)

which may be experimentally realized by imposing at one end of
the system a sinusoidally time-dependent temperature, and calcu-
lating the consequent temperature perturbation at different points
along the system [27,28].
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