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The violent relaxation and the metastable states of the Hamiltonian Mean-Field model, a paradigmatic
system of long-range interactions, is studied using a Hamiltonian formalism. Rigorous results are derived
algebraically for the time evolution of selected macroscopic observables, e.g., the global magnetization.
The high- and low-energy limits are investigated and the analytical predictions are compared with
direct N-body simulations. The method we use enables us to re-interpret the out-of-equilibrium phase
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1. Introduction

Systems with long-range interactions [1,2] exhibit a fascinat-
ing feature of metastability: Starting from out-of-equilibrium initial
conditions, the system violently relaxes toward a metastable state,
often called Quasi-Stationary State (QSS). In this regime, macro-
scopic quantities reach values which substantially differ from the
corresponding thermodynamic equilibrium configuration. Although
the QSS are only transient regimes, their lifetime have been shown
to diverge with the number of bodies in interaction [3]. For this
reason they possibly correspond to the solely accessible experi-
mental regimes.

We consider a paradigmatic system with long-range interac-
tions, the Hamiltonian Mean-Field (HMF) [3] where particles on
a circle are collectively interacting through a cosine-like mean-
field potential. After a fast relaxation, the system typically enters
a metastable regime in which the particles either aggregate into a
large cluster (magnetized phase), or they spread almost homoge-
neously around the circle (unmagnetized or homogeneous phase).
In particular, an out-of-equilibrium phase transition between these
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two states occurs when the parameters of the initial conditions are
varied [4].

In this Letter, we focus on both the violent relaxation process
and the subsequent QSS regime. We use an algebraic framework
based on a Hamiltonian formulation of the Vlasov equation for the
HMF model. This Vlasov equation rules the evolution of the single
particle distribution function in phase space (as a kinetic equation)
and naturally arises when investigating the continuous version of
the HMF model. As in the limit of infinite number of particles the
system gets permanently frozen in the QSS phase, it is customar-
ily believed that QSS can be interpreted as equilibria of the Vlasov
equation. We exploit a Hamiltonian formalism of this Vlasov equa-
tion to derive analytical expressions for the global magnetization
as function of time. This magnetization measures the aggregation
of the particles on the circle. It is a macroscopic observable which
is directly influenced by the microscopic, single particle trajectory.
It is in general particularly cumbersome to bridge the gap between
the microscopic realm of the many-body interacting constituents
and the macroscopic world of collective dynamics.

Using an expansion provided by the Hamiltonian framework,
we here obtain rigorous results on the time expansion of rele-
vant observables. These results are compared with direct numerical
simulation. We consider in particular the high- and low-energy
regimes which allow some simplifications in the expansions. In
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addition, we characterize the aforementioned out-of-equilibrium
phase transition which occurs in an intermediate energy range.
This is achieved by monitoring the initial relaxation of the mag-
netization, as a function of relevant parameters of the initial distri-
bution. The parameter space is hence partitioned into two regions,
depending on the magnetization amount, a result which positively
correlates with direct numerics [4].

The Letter is organized as follows: in Section 2 we will review
the discrete HMF model, present its continuous counterpart and
discuss the basic of the bracket expansion method. Section 3 is
devoted to the presentation of the analytical results, with spe-
cial emphasis to the high- and low-energy regimes. The out-of-
equilibrium phase transition issue is also addressed. Comparison
with direct simulations is provided to substantiate the accuracy of
our predictions.

2. Model and methods
2.1. Lie-Poisson structure of the Vlasov equation

We consider N particles interacting on a circle with the follow-
ing Hamiltonian:

N
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where (6;, pj) are canonically conjugate variables which means

that the Poisson bracket giving the dynamics (Hamilton’s equa-
tions) is given by
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In the continuous limit, we consider an Eulerian description of the
system which gives the dynamical evolution of the distribution of
particles f(0, p;t) in phase space via the following Vlasov equa-
tion:
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where V[f](@) =1— My[f]cos§ — My[f]sinf. The magnetization
M[f1= My +iMy is defined as
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where the integrals are taken over [—m, ] x R. Eq. (2) can be cast
into a Hamiltonian form where the (infinite-dimensional) phase
space is composed of the functions f(@, p) of 1—m, ] x R. The
Hamiltonian is given by
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and the associated Lie-Poisson bracket by
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for F and G two observables (that is, functionals of f). The func-
tional derivatives §F/§ f are computed following the expansion:

FLf + @] - FIf1= f/ %(pd@dp +0(e?).

The Poisson bracket (5) satisfies several properties: bilinearity,
Leibniz rule and Jacobi identity (for more details, see Refs. [5,6]).
Its Casimir invariants are given by

CIf1= / f c(f)dadp,
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Fig. 1. Real part of the magnetization given by Eq. (3) as a function of time ob-
tained by integrating the dynamics given by Eq. (6) for Mo = 0.6. The system
reaches either a finite-magnetization for low energies (U = 0.4, in blue), or a low-
magnetization for high energies (U = 3, in red). The plain lines refer to N-body
simulations (with N = 10000), while the dotted lines come from the predictions
given by Eq. (9) for ko = 20. (For interpretation of colors in this figure, the reader is
referred to the web version of this article.)

where c(f) is any function of f(6, p). In particular, the total dis-
tribution [f fd6dp is one of such Casimir invariants and hence
is conserved by the flow. The evolution of any observable F[f] is
then given by

F={H,F)}. (6)

For instance, for F[f] = f(6, p), we recover Eq. (2). Another con-
venient observable to study is the magnetization M[f] given by
Eq. (3): It quantifies the spatial aggregation of the particles. At
low energies, the magnetization typically relaxes until it reaches an
out-of-equilibrium plateau, around which it fluctuates (see Fig. 1).
In this case, the particles are trapped into the large resonance
created by the finite magnetization, hence the name “magnetized
state” (see upper panel of Fig. 2). At high energies, the magneti-
zation falls and fluctuates around zero (see Fig. 1), which means
that the particles failed to organize collectively. This is called the
“homogeneous phase” (see lower panel of Fig. 2).

The dynamics given by Eq. (6) is deduced from the linear oper-
ator H. From the evaluation of the functional derivative of H with
respect to f
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we get the expression of H:
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In the algebraic computations that follow, we make an explicit
use of the linearity of H and Leibniz rule:
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(7)

H(F +aG) =HF +aHG,
H(FG) = FHG + (HF)G.

N-body simulations (Lagrangian point of view): In order to com-
pare the algebraic results with numerical ones, we integrate Eq. (6)
via N-body simulations, which are obtained by considering a
Klimontovitch [7] distribution of particles

N
1
fO.po=y ;5(9 —6;(0)3(p — pi(©),
whose dynamics is ultimately reduced to Hamiltonian (1). Such

simulations are used with a large number of particles (typically
N = 10°) such that the intermediate regime experienced by the
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