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We considered a Bak–Sneppen model on a Sierpinski gasket fractal. We calculated the avalanche size
distribution and the distribution of distances between subsequent minimal sites. To observe the temporal
correlations of the avalanche, we estimated the return time distribution, the first-return time, and the
all-return time distribution. The avalanche size distribution follows the power law, P (s) ∼ s−τ , with the
exponent τ = 1.004(7). The distribution of jumping sites also follows the power law, P (r) ∼ r−π , with
the critical exponent π = 4.12(4). We observe the periodic oscillation of the distribution of the jumping
distances which originated from the jumps of the level when the minimal site crosses the stage of the
fractal. The first-return time distribution shows the power law, P f (t) ∼ t−τ f , with the critical exponent
τ f = 1.418(7). The all-return time distribution is also characterized by the power law, Pa(t) ∼ t−τa , with
the exponent τa = 0.522(4). The exponents of the return time satisfy the scaling relation τ f + τa = 2 for
τ f � 2.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Many complex systems show self-organized criticality (SOC)
without the control parameters [1–5]. The Bak–Sneppen (BS)
model originated from the macroscopic coevolutionary dynamics
of biological systems. The evolution takes place intermittently. Af-
ter a long calm state, the speciation or extinction occurs abruptly.
The BS model is a simple system showing SOC and follows ex-
tremal dynamics. In extremal dynamics, a site with some globally
extremal value is updated and dynamically interacts with nearby
sites. The system evolves toward the critical state without any
characteristic scales. Many systems showing the SOC have been
introduced; for example, an avalanche of sand or rice, invasion
percolation for fluid displacement in porous media, the Sneppen
model for the dynamics of surfaces pinned by quenched disorder,
and the Olami–Feder–Christensen model which describes the mo-
tion of tectonic plates, etc. [6–10].

In the BS model, each species on the lattice with size N has
fitness value f i which is generated from the uniform random num-
ber [5,10]. The species with the lowest fitness is updated by new
randomly-selected fitness. Simultaneously, the fitness of its nearest
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neighbors is also updated. Only the species with minimal fitness
and her nearest neighbors become extinct and are replaced by new
species. As this process is repeated, the system approaches the crit-
ical states. At the critical steady-state, the fitness of the species
is greater than the critical threshold fc . In the BS model, the ac-
tive site is defined by the site having the fitness with f i � fc .
When a minimal fitness site becomes active, this activity propa-
gates like an avalanche. This avalanche stops when all the fitness
levels of the sites are greater than fc again. The duration time
s of an avalanche is called by an avalanche size. The probabil-
ity distribution of the avalanche size follows the power law. The
criticalities of the BS model were reported on the regular lat-
tice, small-world networks, and the scale-free network [11–24].
The universality of the BS model has been studied for the lat-
tice systems [10]. We summarized the critical exponents of the
BS model in Table 1 for the isotropic cases. The critical expo-
nents depend on the dimensionality of the lattice and also on
the symmetry. For the anisotropic BS model, the critical expo-
nents showed different values in comparison to the isotropic BS
model [16,17]. The upper critical dimension of the BS model is
still controversial [11,12]. Boettcher and Paczuski proposed dc = 4
[12], but De Los Rios et al. reported dc = 8 [11]. At the d > dc the
critical exponents followed the mean-field exponents. The expo-
nent τ of the avalanche size distribution is τ = 3/2 at the mean-
field [10].
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Table 1
The critical exponents of the isotropic Bak–Sneppen model. The exponents are from
Ref. [10] for 1-D and 2-D lattices and from Ref. [11,12] for 3-D and 4-D lattices.

Lattice τ π τ f τa

1D lattice 0.914(4) 3.23(2) 1.58(1) 0.45(2)

SG 1.004(7) 4.12(4) 1.418(7) 0.522(4)

2D lattice 1.25(1) – 1.28(3) 0.70(3)

3D lattice 1.35 – 1.09 0.92
4D lattice 1.41 – 1.16 1.15

The lattice and network structure influence to the critical be-
haviors of the SOC models. With investigating the sandpile model
on the two-dimensional Sierpinski gasket fractal, Kutnjak-Urbanc
et al. validated the existence of the SOC phenomena and critical
scaling properties on deterministic fractal unlike the Ising model
below two dimensions [28]. Vanderzande and Daerden predicted a
scaling relation, ν = 1/d f , where ν is the critical exponent of the
correlation length and d f is the fractal dimension of the dissipated
Abelian sandpile model on two-dimensional Sierpinski gasket frac-
tal [29]. The fractal structures have been found in many complex
ecological system [30–35]. Therefore, it is interesting to study the
Bak–Sneppen model of the biological evolution on a fractal struc-
ture. The critical exponents of the BS model on the fractal are
non-trivial. To our knowledge, the BS model have not been re-
ported on a fractal structure until now. In this article we consider
the Bak–Sneppen model on the Sierpinski gasket fractal [25–27].
We investigate the effect of the dimensionality and the topology
on the critical behavior of the BS model. We confirm the scal-
ing properties and the critical exponents of the BS model on the
Sierpinski gasket as their analogy for the sand pile models [28,
29]. The fractal structure is characterized by the fractal dimen-
sion d f . By self-similarity, the fractal dimension is not the integer
but the real number. The Sierpinski gasket fractal has the fractal di-
mension d f = ln 3/ ln 2 = 1.58496 . . . . We observe that the critical
exponents are changed by the fractal structure. However, the scal-
ing relations hold when we replace the dimension to the fractal
dimension. The critical exponents of the first and all-return time
distribution satisfied the scaling relation for the gasket fractal. We
introduce the gasket fractal and Monte Carlo method in Section 2.
We present the results and discussions in Section 3. We summa-
rize results in Section 4.

2. Gasket fractal and Monte Carlo method

We generated the Sierpinski gasket fractal on two-dimensional
Euclidean space. The generator of the Sierpinski gasket was an
equilateral triangle. In the first stage n = 1, we cut out the in-
verse triangle that is formed by connecting the middle points of
each side. We repeated this procedure for the remaining upright
triangles. At the stage n, the total number of the lattice point was
equal to N(n) = 3(3n + 1)/2. At the stage n = 8, the total number
of lattice sites was N(8) = 9843. We generated the gasket fractal at
the stage n = 6,7,8. On the gasket fractal, we simulated the Bak–
Sneppen model. We assigned the fitness values on the each lattice
site of the gasket fractal. At each Monte Carlo step we updated the
fitness of the minimal fitness site and its nearest neighbors sites.
We then repeated these processes. At steady-state, the critical fit-
ness was fc = 0.4069 which is smaller than the one-dimensional
critical fitness fc = 0.66736 [26]. We observed the distribution of
the avalanche size and the return-time distribution at the steady-
state.

3. Results and discussions

Fig. 1 shows the normalized probability distribution P (s) of the
avalanche size as a function of the duration time s. The distribution
of the avalanche size shows the power law,

Fig. 1. The probability distribution of the avalanche size for the different size of the
gasket fractal at the stage n = 6,7,8. The normalized probability distribution shows
a power law, P (s) ∼ s−τ . We obtained the critical exponent τ = 1.004(7) by a least
squares fit. (To distinguish between different color lines in the figures, the reader is
referred to the web version of this article.)

P (s) ∼ s−τ . (1)

We obtained the critical exponent τ = 1.004(7) by a least squares
fit. The exponent τ is located between the value τ (1D) = 0.914
of the one-dimensional lattice and the value τ (2D) = 1.25 of the
two-dimensional lattice. The critical exponents are summarized in
Table 1 and compared with previous results of the lattice. We also
estimated the covered sites V (s) of an avalanche as a function of
the duration time s. The average covered sites followed the power
law, V (s) ∼ sμ . The exponents τ and μ are a set of the basic expo-
nents for the universality of the Bak–Sneppen model. We obtained
the exponent μ = 0.58(7) for the gasket fractal.

Fig. 2 shows the normalized probability distribution P (r) of the
jumping distances between subsequent minimal sites as a function
of the distance r. When an avalanche propagates on the gasket
fractal, an active site and its nearest sites are updated simulta-
neously. Then, the next minimal site is a distance r away. The
distribution P (r) follows the power law,

P (r) ∼ r−π , (2)

with periodic modulation. We obtained the exponent, π = 4.12(4)

for the gasket fractal. We observed the periodic local peaks of the
distribution. These kinds of oscillations have been observed for the
distribution functions in different systems on the Sierpinski gasket
fractal [25,28]. The peaks originated from the level jump of the
gasket fractal. When the site of the minimal fitness jumps from
the stage n + 1 to the stage n on the gasket fractal, the Euclidean
distance also jumps by the discrete scale invariant nature of the
underlying fractal lattice. The exponent π for the gasket fractal is
larger than the exponent π = 3.19 for the one-dimensional lattice.

The critical exponents are expressed by the base exponents
(τ ,μ). The covered sites of an avalanche are fractal structure,
V (s) = R(s)D where R(s) is the radius of gyration of the fractal.
The exponent μ is related to the exponent D as μ = d/D where
d is the spatial dimension of the lattice [10]. In the Sierpinski gas-
ket d is the fractal dimension d = d f . The exponent π satisfies a
scaling relation π = 1 + D(2 − τ ). From this relation we obtained
the exponent D = (π − 1)/(2 − τ ). Then, we obtained the expo-
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