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On the microscopic theory of the exciton ring fragmentation
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Abstract

The description is presented for the dependence of the indirect exciton condensate density at the ring as a function of the polar angle at zero
temperature with the involvement of the processes of formation and recombination of the excitons. In particular, starting from the quasi one-
dimensional Gross–Pitaevskii equation with a spatially uniform generating term, we derive an exact analytical solution yielding the fragmentation
of an exciton ring which is probably observed in the experiments.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the recent experiments of the Butov’s group [1,2] the
macroscopically ordered coherent state (MOCS) of the indi-
rect exciton system has been observed in the coupled quan-
tum wells. The state represents a periodic fragmentation of the
ring formed in the intersection domain of the surplus densi-
ties of electrons in one well and photoexcited holes in another
[3–5]. The fragmentation is observed below some critical tem-
perature (Tc ∼ 1 K) and within a certain range of the laser
pumping power when the density n of indirect excitons (IEs)
at the ring is sufficiently large and the excitons are well defined
(n ∼ 109 cm−2, an average spacing between IEs at the ring is
āex−ex ∼ n−1/2 ∼ 0.1 µm, the IE Bohr radius is aB ∼ 10−2 µm,
āex−ex/aB ∼ 10). The typical parameters of the fragmented ring
are as follows [2]: average ring radius is R ∼ 102 µm, the ring
width is �R ∼ 10 µm, the average radius of a fragment is
rfr ≈ �R/2, and a number of fragments on the ring is Nfr ≈ 50.
The evidence for the MOCS coherence results from a clear in-
terference pattern of the IE recombination radiation from one
of the ring fragments [6].
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At present, there exist two different phenomenological the-
ories of the MOCS formation. The first theory [7] is based on
the assumption that the IE system represents a degenerate two-
dimensional quasi-ideal Bose gas and the rate of aggregating
an electron and a hole to form an indirect exciton is propor-
tional to the factor (1 + N0), where N0 is the number of the
IEs in the zero momentum state. Under definite conditions this
leads to the instability against fluctuations of the IE ring den-
sity. However, the theory seems to be intrinsically inconsistent
since, on the one hand, the dipole–dipole interaction between
the excitons is neglected, what is allowable only in the low den-
sity limit, and, on the other hand, the exciton condensate density
should be sufficiently large so that the contribution from the
stimulated processes would be essential.

The second theory [8] is based on that the total contribu-
tion of the repulsive dipole–dipole and attractive van der Waals
interactions becomes attractive at the distances smaller than
several IE radii. According to this theory, the ring fragmenta-
tion is due to formation of the islands of electron–hole liquid
and is not associated with the Bose–Einstein condensation of
the IEs. (We also mention paper [9] in which the IE energy dis-
tribution is suggested to be the Boltzmann one and, along with
an attractive pair potential, the repulsive three-body interaction
between IEs is considered. At the same time the nature of the
latter is not explained.) However, the results of the experiment
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[10] unambiguously evidence for the repulsive character of the
IE interaction. This is consistent with the idea that just this in-
teraction results in a rapid IE thermalization (along with the
nonconservation of a transverse momentum) and in the screen-
ing of the surface defects in the quantum wells plane. Note that
any extension beyond the dipole approximation while consider-
ing the interaction between the IEs is equivalent to the deviation
from the Bose statistics, which should self-consistently be taken
into account.

As is seen from the pictures of the spatial distribution of the
IE luminescence (see [1,2]), there exist two different spatial pe-
riods on the fragmented ring, namely, the size of a fragment and
the size of a dark region separating adjacent fragments. There-
fore, it is clear that the density as a function of the polar angle
should be expressed via a periodic function with nonsymmetric
half-periods, i.e., an elliptic function. So, if ρ(φ) is an ellip-
tic function, it satisfies equation (ρ′

φ)2 = P4(ρ), where P4(ρ)

is a quartic polynomial in ρ. To the same form one can reduce
the one-dimensional stationary Gross–Pitaevskii equation with-
out an external potential, which, as is well known, describes a
condensate of Bose particles. Hence, the idea arises that the
ring fragmentation can be explained assuming that under ex-
perimental conditions an IE condensate exists on the ring. In
addition, the formation and recombination of excitons on the
ring can be taken into account by their interaction with some
scalar generating, or “source-drain”, field independent of co-
ordinates. Formally, this is similar to the contribution from the
dipole interaction of atoms with the electromagnetic field. If the
number of the IEs on the ring does not vary in time, a concept
of energy of the system is meaningful and one can find the sta-
tionary states of the condensate as well as the corresponding
density spatial distributions.

In this Letter, we suggest the simplest microscopic theory of
the MOCS based on the thing that the presence of BEC in the IE
system (in spite of the BEC depletion due to repulsive exciton–
exciton interaction) as well as the influence of the processes of
IE formation and recombination on the ring result in the realiza-
tion of a stationary excited state of the condensate, which is not
spatially uniform. The indirect excitons are treated as genuine
Bose particles. In addition, we suppose that the radial profile
of the condensate density is governed by the processes which
have no direct relation to the ring fragmentation. This allows us
to consider a quasi one-dimensional problem.

2. Polar angle dependence of the condensate density

The Hamiltonian for the exciton system with the source
reads

Ĥ = ĤJ +
∫

d�r Ψ̂ +(�r, t) p̂2

2m
Ψ̂ (�r, t)

(1)

+ 1

2

∫
d�r d�r ′ Ψ̂ +(�r, t)Ψ̂ +(�r ′, t)U(�r − �r ′)Ψ̂ (�r ′, t)Ψ̂ (�r, t).

Here Ψ̂ (�r, t) is a Bose field operator obeying the commuta-
tion relations [Ψ̂ (�r1, t), Ψ̂

+(�r2, t)] = δ(�r1 − �r2), [Ψ̂ , Ψ̂ ] =
[Ψ̂ +, Ψ̂ +] = 0. For simplicity, we suggest that the repulsive

pair interaction is local, i.e., U(�r) = λδ(�r) and λ > 0. In fact,
this means either the Born approximation for the potential U(r)

with λ = ∫
U(r) d�r , or the gas approximation na2

2D � 1, where
n is the two-dimensional IE density and a2D = mλ/(4πh̄2) is
an exact s-scattering length [11]. The contribution of the source
is given by

(2)ĤJ =
∫

d�r (
J (t)Ψ̂ +(�r, t) + J ∗(t)Ψ̂ (�r, t)),

where J (t) = |J |eiα(t). It is natural to assume that the time
dependence of the source is the same as for the wave func-
tion of the ground condensate state in the lack of the source,
α(t) = −μt . We suggest that the quantities |J | and μ are time-
independent.

Let us consider the equation of motion for Ψ̂ -operator,
ih̄∂Ψ̂ (�r, t)/∂t = [Ψ̂ (�r, t), Ĥ ], assuming zero temperature of
the system. Here, the most fraction of excitons is in the Bose-
condensate state and thus we neglect noncondensate particles.
Then Ψ̂ -operator becomes the c-number and obeys the equation

(3)ih̄Ψ̇ = − h̄2

2m
∇2Ψ + λ|Ψ |2Ψ + J,

which for J = 0 turns into the Gross–Pitaevskii equation. Sup-
posing that the radial profile of the condensate density is un-
varied, we consider a quasi 1D problem. Then, the genuine
density “in amplitude” refers to the result obtained as ntrue/n ∼
āex−ex/�R ∼ 10−2. For the polar frame with the origin at the
ring center ∇2 ≈ R−2∂2/∂φ2, d�r ≈ 2πR�R dφ = S dφ, where
φ is the polar angle, R is the ring radius, and R 	= R(n). The
aim of the work is to find a qualitative behavior n(φ) at various
magnitudes of the parameters.

If one measures energy in units ER = h̄2/(2mR2), time in
τR = h̄/ER , and density in S−1, the constants in Eq. (3) are
dimensionless

(4)iΨ̇ = −Ψ ′′
φφ + λ|Ψ |2Ψ + J.

Let us seek for the solution (4) as Ψ = ρeif , where ρ2 ≈ n

and f are the density and phase of the condensate, respectively.
Then, for the real and imaginary parts of Ψ the following equa-
tions are valid

(5)ρḟ + ρ(f ′
φ)2 − ρ′′

φφ + λρ3 + |J | cos(α − f ) = 0,

(6)ρ̇ + 2ρ′
φf ′

φ + ρf ′′
φφ − |J | sin(α − f ) = 0.

Multiplying both sides of Eq. (6) by 2ρ and integrating over φ,
we obtain that the rate of variation of the particle number N

equals

(7)Ṅ =
∫

d�r 2ρρ̇ =
∫

d�r 2ρ|J | sin(α − f ).

In what follows, we are interested in the stationary currentless
states alone: Ṅ = 0, f ′

φ = 0. Then f = α + πl, l is an integer.
So,

(8)ρ′′
φφ + μρ − λρ3 − |J |(−1)l = 0,

in which α(t) = −μt is taken into account. In the case of the
homogeneous density (ρ′

φ ≡ 0, ρ = ρ0) and |J | = 0, μ has a
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