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We consider the evolution of scale-free networks according to preferential attachment schemes and show
the conditions for which the exponent characterizing the degree distribution is bounded by upper and
lower values. Our framework is an agent model, presented in the context of economic networks of trades,
which shows the emergence of critical behavior. Starting from a brief discussion about the main features
of the evolving network of trades, we show that the logarithmic return distributions have bounded heavy
tails, and the corresponding bounding exponent values can be derived. Finally, we discuss these findings
in the context of model risk.
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1. Introduction: a note on agent models for social systems

Similarly to other fields in social sciences, most of the research
made in finance and economics has been dominated by an episte-
mological approach, in which the behavior of the economic system
is explained by a few key characteristics of the behavior itself,
like the amplitude of price fluctuations or the analytical form of
the heavy-tailed return distributions [1,2]. These key characteris-
tics motivated researchers to assume such distributions as α-stable
Lévy distributions or truncated α-stable Lévy distributions [3]. The
reason for this assumption is given by the more general version
of the central limit theorem – sometimes not so well known –
which states that the aggregation of a growing number of random
variables converges to an α-stable Lévy distribution [4]. If these
random variables have finite variances then the resulting aggre-
gation is a 2-stable Lévy distribution, i.e. a Gaussian distribution.
If the variances are infinite – or of the order of the system size
– then α < 2 and the so-called heavy-tailed shape emerges as a
result of the aggregation. Further, non-Gaussian (heavy-tailed) dis-
tributions are associated with correlated variables and therefore it
is reasonable to assume that measurements on aggregates of hu-
man activities will result in an α-stable Lévy distribution, since
humans are strongly correlated with each other. Henceforth, we
refer to α-stable Lévy distributions with α < 2 as Lévy distribu-
tions and with α = 2 as Gaussian distributions.
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Without leaving an epistemological approach, we could address
the study of the resulting distributions by ignoring the previous ar-
guments and construct a function that fits any set of empirical data
just by building up fitting parameters until the plotted function fit
the empirical data. Such approach would be the best one, if eco-
nomic processes were stationary. Unfortunately they are not [5–7]
and this means that we cannot disregard the underlying mecha-
nisms generating the data we are analyzing.

Since heavy tails are observed in the returns of economic vari-
ables, one would expect that practitioners use Lévy distributions.
The particular case of Gaussian distribution was the first to be
considered for modeling price of European options, through the
well-known Black–Scholes model [8] proposed in 1973. This model
ended a story started already in 1900 with Bachelier and his The-
ory of Speculation [9] where Brownian motion was used to model
stock price evolution. The Black–Scholes model for option-pricing
is however inconsistent with options data, since stock-price be-
havior is essentially not Gaussian. To overcome the imperfections
of the Black–Scholes model, more sophisticated models were pro-
posed since 1980s and 1990s, which basically assume processes
more general than Brownian processes. These processes are called
Lévy processes [10] and the probability distributions of their in-
crements are infinitely divisible, i.e. one random variable following
that probability distribution can be decomposed into one sum of
an arbitrary integer number of independent identically distributed
random variables.

Still, despite considerable progresses on modeling financial data
with Lévy processes, practitioners continue to show a strong pref-
erence for the particular class of finite moment’s distributions
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and there are good reasons for that. Assuming that Lévy distribu-
tions are good representations of economic variables fluctuations,
a model based on them is closed when one fits the distribution to
empirical data choosing properly the parameter values, which rep-
resent the valuable information for financial insight and decision
making. However, as said above, fitting is no good when the series
are not stationary: there is no guarantee that today’s fitting will
be the same as tomorrows. Since working with a Gaussian curve
is more straightforward than working with a Lévy distribution and
needs less parameters for curve fitting, there is no practical gain
in abandoning Gaussian distribution to model the distribution of
fluctuations according to a prescribed mathematical model, even
though it is not entirely correct. In other words, if a Lévy distribu-
tion is fitted to empirical data of a non-stationary process one will
carry basically the same model risk, as if a Gaussian distribution is
used.

On a more ontological approach, when modeling financial and
economic networks, random variables are translated into agents.
Agent-based models for describing and addressing the evolution of
markets has become an issue of increasing interest [11] and ap-
peals for further developments [12–15]. They enable one to access
three important questions [5]. First, the system is able in this way
to be decomposed into sellers and buyers, a common feature of
all finance systems. Second, one enables non-stationary regimes to
occur, as in real stock markets. Third, by properly incorporating the
ingredients of financial agents and the trades among them one can
directly investigate the impact of trades in the price, according to
some prescribe scheme.

In this Letter we use an agent model for the individual be-
havior of single financial agents, at a microscopic scale, in a way
that the collective behavior generates an output in accordance
with the observed curves of macroscopic variables, namely the
financial indices. Several of such bottom-up approaches were thor-
oughly investigated [16,12]. The Solomon–Levy model [17] defines
each agent as a wealth function ωi(t) that cannot go below a
floor level, given by ωi(t) � ω0ω̄(t) where ω̄(t) is the agent av-
erage ω at instant t and ω0 is a proper constant. The imposition
of the floor based on the mean field ω̄(t) means that on aver-
age 〈|ωi(t) − ω̄(t)|〉 ∼ N and, by basic statistics, var(ω(t)) ∼ N2.
Consequently, the result of the Solomon–Levy model, despite the
interesting idea of the introduction of a floor similar to what was
done by Merton [18] in the agent dynamics, will surely be an
α-stable distribution with a power-law heavy tail, i.e. α < 2. Per-
colation based models like Cont and Bouchaud [19] or Solomon
and Weisbuch [20], by the nature of the phenomena, also brings
up variations of the order of the system size, leading also to Lévy-
type distributions.

In our approach, we follow the above considerations, to address
the following question: what are the fundamental assumptions,
common e.g. to all economic systems, that naturally lead to the
emergence of macroscopic distributions that are characterized by
heavy tails? Taking an economic system as a prototypical exam-
ple for the emergence of heavy-tailed distributions, we argue that
there are three fundamental assumptions.

First, agents tend to trade, i.e. to interact. Human beings are
more efficient in doing specialized labor than being self-sufficient
and for that they need to exchange labor. The usage of the expres-
sion ‘labor’ can be regarded as excessive by economists, but we
look at it as the fundamental quantity that is common to labor,
money or wage. Something must be common to all these quanti-
ties; if not, we wouldn’t exchange them. The physicists can regard
such fundamental quantity as an ‘economic energy’.

Second, we only consume and produce a finite amount of
the overall product that exists within our environment. This as-
sumption justifies the emergence for each agent of a maximum
production and minimum consumption. If an agent transposes

that finite amount he should not be able to consume any-
more.

Third, human agents are different and attract differently other
agents to trade. For choosing the way “how” agents attract each
other for trading, we notice that this heterogeneity should reflect
some imitation, where agents tend to prefer to consume (resp. pro-
duce) from (resp. to) the agents with the largest number of con-
sumers (resp. producers). The number of producer and consumer
neighbors reflects, respectively, supply and demand of its labor.
With such observation its is reasonable to assume that combin-
ing both kinds of neighbors should suffice to quantify the price of
the labor exchanged.

Heavy-tailed distributions have been subject to intensive re-
search activity till very recently, e.g. when addressing the forma-
tion and construction of efficient reservoir networks [21], which
shows self-organized criticality with critical exponents that can be
explained by a self-organized-criticality-type model. In this Letter,
we deal with heavy tails found in economic systems and show that
heavy-tailed return distributions are due to the economic organi-
zation emerging in a complex economic network of trades among
agents governed under the above three assumptions. Further, the
model reproducing empirical data is also of the self-organized-
criticality-type model, but its main ingredients result from eco-
nomical reasoning and assumptions.

Our central result deals in particular with the return distribu-
tion found in both data and model: we show that the power-law
tails are characterized by an exponent that can be measured and is
constrained by upper and lower bounds, which can be analytically
deduced. The knowledge of such boundaries is of great impor-
tance for risk estimates: by deriving upper and lower bounds, one
avoids either underestimates, which enable the occurrence of crisis
unexpectedly, as well as overestimates, which prevent profit maxi-
mization of the trading agents.

We start in Section 2 by describing the ubiquity of heavy tails
in financial time series, namely in stock indices. We will argue that
such heavy tails result from the combination of a dynamical crit-
ical state in real economic systems and an underlying scale-free
topology. Applied to a real system such as the financial market,
such bounded behavior leads naturally to a maximum and mini-
mum value on risk evaluation, improving the knowledge about the
uncertainty of the market future evolution. These bounding values
will be derived in Section 3 based in the assumptions listed above
and an application to risk model is discussed. Section 4 concludes
this Letter.

2. Critical behavior underlying return distributions

Heavy tails are observed in return distributions of data in fi-
nance and economics. Fig. 1 presents data from several stock mar-
ket indices. Fig. 1(a) shows the probability density functions (PDF)
of the logarithmic returns of each index, symbolized as x, where
one can observe the heavy tails. The exponent characterizing the
tails of these distributions are given in Fig. 1(b).

While the heavy-tailed shape of the return distributions was
already known and several times reported [22], the explanation
for their emergence, and in particular the values of the exponent
characterizing them, was up to our knowledge not so frequently
addressed.

The emergence of the heavy tails of the return distribution was
recently reproduced with a simple model [7] which takes one eco-
nomic connection as an exchange of labor between two agents,
say i and j, dissipating an amount of energy Uij , representing the
deficit of i that results from the labor exchange between i and j.
Agent i delivers an amount of labor W ij to agent j and gets a
proportional amount of “reward” Eij = αi j W ij where αi j can be
interpreted as an ‘exchange rate’ of labor. Fig. 2 illustrates the eco-
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