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Scattering of a relativistic scalar particle by a cusp potential
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Abstract

We solve the Klein–Gordon equation in the presence of a spatially one-dimensional cusp potential. The scattering solutions are obtained in
terms of Whittaker functions and the condition for the existence of transmission resonances is derived. We show the dependence of the zero-
reflection condition on the shape of the potential. In the low-momentum limit, transmission resonances are associated with half-bound states. We
express the condition for transmission resonances in terms of the phase shifts.
© 2006 Published by Elsevier B.V.
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The study of low-momentum scattering of nonrelativistic
particles by one-dimensional potentials is a well studied and un-
derstood problem [1]. Here we have that, as momentum goes to
zero, the reflection coefficient goes to unity unless the potential
V (x) supports a zero-energy resonance. In this case the trans-
mission coefficient goes to unity, becoming a transmission reso-
nance [2]. Recently, this result has been generalized to the Dirac
equation [3], showing that transmission resonances at k = 0 in
the Dirac equation take place for a potential barrier V = V (x)

when the corresponding potential well V = −V (x) supports a
supercritical state. Kennedy [4] has shown that this result is
also valid for a Woods–Saxon potential. More recently, trans-
mission resonances and half-bound states have been discussed
for a Dirac particle scattered by a cusp potential [5,6] as well
as for a class of short-range potentials [7]. The bound states for
scalar relativistic particles satisfying the Klein–Gordon equa-
tion are qualitatively different from the previous case. Here, for
short-range attractive potentials the Schiff–Snyder effect [8–14]
takes place, i.e. for a given potential strength two bound states

* Corresponding author.
E-mail addresses: villalba@ivic.ve (V.M. Villalba), crojas@ivic.ve

(C. Rojas).

appear, one with positive norm and another with negative norm.
Such states can be associated with a particle–antiparticle cre-
ation process. No antiresonant states appear [11,12].

The absence of resonant overcritical states for the Klein–
Gordon equation in the presence of short-range potential in-
teractions does not prevent the existence of transmission res-
onances for given values of the potential.

Quantum effects associated with scalar particles in the pres-
ence of external potentials have been extensively discussed in
the literature [10,14]. Among quantum effects, we have that
transmission resonance is one of the most interesting pheno-
menon. For given values of the energy and the proper choice of
the shape of the effective barrier, the probability of transmission
reaches a maximum such as that obtained in the study of super-
radiance [14], where the amplitude of the scattered solutions by
a rotating Kerr black hole is even larger than the amplitude of
the incident wave. Analogous phenomena can also be obtained
due to the presence of strong electromagnetic potentials [15].

Recently, transmission resonances for the Klein–Gordon
equation in the presence of a Woods–Saxon potential barrier
have been computed [16]. The transmission coefficient as a
function of the energy and the potential amplitude shows a
behavior that resembles the one obtained for the Dirac equa-
tion [4]. This result also holds for the square potential [11].
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In this Letter we discuss the scattering of a Klein–Gordon
scalar particle by the vector cusp potential [5]

(1)eA0(x) = V (x) =
{

V0e
x/a for x < 0,

V0e
−x/a for x > 0.

The potential (1) vanishes exponentially for large values of x,
the parameter V0 determines the strength of the barrier and the
constant a defines the width of the potential. The cusp potential
(1) reduces to a repulsive delta interaction of strength g in the
limit 2aV0 → g as a → 0. It is the purpose of the present Let-
ter to compute the scattering solutions of the one-dimensional
Klein–Gordon equation in the presence of the cusp vector po-
tential and show that one-dimensional scalar wave solutions
exhibit transmission resonances with a functional dependence
on the shape and strength of the potential similar that obtained
for the Dirac equation [4]. The cusp vector potential (1) does
not possess a square barrier limit and consequently the phase
shift δ, associated with the transmission amplitude, cannot be
directly identified with the positions of the transmission reso-
nances [11].

The one-dimensional Klein–Gordon equation, minimally
coupled to a vector potential Aμ can be written as

(2)ηαβ(∂α + ieAα)(∂β + ieAβ)φ + φ = 0,

where the metric ηαβ = diag(1,−1) and here and thereafter we
choose to work in natural units h̄ = c = m = 1.

Since the potential V (x) in Eq. (1) does not depend on time,
we have that φ = φ(x) exp(−iEt), and the problem of solv-
ing the one-dimensional Klein–Gordon equation (2) reduces to
that of finding solutions to the second-order differential equa-
tion [10]

(3)
d2φ(x)

dx2
+ [(

E − V (x)
)2 − 1

]
φ(x) = 0.

Let us consider the scattering solutions for x < 0 with E2 > 1
of the Klein–Gordon equation. We proceed to solve the differ-
ential equation

(4)
d2φL(x)

dx2
+ [(

E − V0e
x/a

)2 − 1
]
φL(x) = 0.

On making the variable change y = 2iaV0e
x/a , Eq. (4) be-

comes

(5)y
d

dy

(
y

dφL

dy

)
− [

(iaE − y/2)2 + a2]φL = 0.

Setting φL = y−1/2f (y), Eq. (5) reduces to the Whittaker
equation [17, p. 505]

(6)
d2f (y)

dy2
+

[
−1

4
+ iaE

y
+ 1/4 − μ2

y2

]
f (y) = 0.

The general solution of Eq. (6) can be written as

(7)φL(y) = c1y
−1/2Mκ,μ(y) + c2y

−1/2Mκ,−μ(y),

where Mκ,μ(y) is the Whittaker functions [17, p. 505] and

(8)κ = iaE, μ = ia
√

E2 − 1.

Now we consider the solution for x > 0. In this case, the
differential equation to solve is

(9)
d2φR(x)

dx2
+ [(

E − V0e
−x/a

)2 − 1
]
φR(x) = 0.

On making the variable change z = 2iaV0e
−x/a , Eq. (9) can be

written as

(10)z
d

dz

(
z
φR

dz

)
− [

(iaE − z/2)2 + a2]φR = 0.

Putting φR = z−1/2g(z) we obtain the Whittaker differential
equation

(11)
d2g(z)

dz2
+

[
−1

4
+ iaE

z
+ 1/4 − μ2

z2

]
g(z) = 0

whose solution is

(12)φR(z) = c3z
−1/2Mκ,−μ(z) + c4z

−1/2Mκ,μ(z).

Using the asymptotic behavior of the Whittaker function
Mκ,μ(y) → e−y/2y1/2+μ, as y → 0 [17, p. 504], we can write
the incoming wave solution φinc(x) in the form

(13)φinc(x) = c1(2iaV0)
−1/2e−x/2aMκ,μ

(
2iaV0e

x/a
)
.

As x → −∞, φinc behaves like a plane wave traveling to the
right

(14)φinc → c1(2iaV0)
μei

√
E2−1x.

Analogously, we have that the reflected φref(x) solution can be
written as

(15)φref(x) = c2(2iaV0)
−1/2e−x/2aMκ,−μ

(
2iaV0e

x/a
)
.

As x → −∞, φref(x) has the asymptotic behavior

(16)φref → c2(2iaV0)
−μe−i

√
E2−1x.

Finally, using the right solution φR (12), we have that the trans-
mitted solution φtrans(x) can be expressed as

(17)φtrans(x) = c3(2iaV0)
−1/2ex/2aMκ,−μ

(
2iaV0e

−x/a
)
,

with c4 = 0. As x → ∞, φtrans(x) takes the asymptotic plane
wave behavior

(18)φtrans → c3(2iaV0)
−μei

√
E2−1x.

The electrical current density for the one-dimensional Klein–
Gordon equation (2) is given by the expression:

(19)jμ = i

2

(
φ∗∂μφ − φ∂μφ∗).

The current as x → −∞ can be decomposed as jL = jin − jrefl
where jin is the incident current and jrefl is the reflected one.
Analogously we have that, on the right side, as x → ∞ the cur-
rent is jR = jtrans, where jtrans is the transmitted current.

Using the reflected jrefl and transmitted jtrans currents, we
have that the reflection and transmission coefficients R and T

can be expressed as

(20)R = jrefl

jinc
, T = jtrans

jinc
.
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