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Abstract

Based on the Khokhlov—Zabolotskaya—Kuznetsov (KZK) equation, a model in the frequency domain is given to describe the transmission of
finite amplitude sound beam in multi-layered biological media. Favorable agreement between the theoretical analyses and the measured results
shows this approach could effectively describe the transmission of finite amplitude sound wave in multi-layered biological media.
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1. Introduction

Sound propagation of the finite amplitude sound beam emit-
ted by a piston transducer plays an important role in applica-
tions of ultrasound. Ultrasound has been widely used in medical
diagnoses and has potential applications in noninvasive ther-
apy, for example, high intensity focused ultrasound (HIFU) and
so on. In 1969, the Khokhlov—Zabolotskaya (KZ) equation [1]
was developed to describe sound beam propagation governing
diffraction and nonlinear effects. Later, Kuznetsov [2] took ac-
count of the thermo-viscous absorption term and gave a gener-
alized equation called the Khokhlov—Zabolotskaya—Kuznetsov
(KZK) equation. The propagation of the sound beam emitted by
a piston plane transducer or a focused transducer can be studied
by solving the KZK equation in both time and frequency do-
mains. However, most of the analytical theoretical work is per-
formed by means of Gaussian beams [3,4]. Coulouvrat [5] used
a renormalization method to study the strong nonlinear effects
for bounded sound beams. A special analytical method, which
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combines the parabolic approximation with nonlinear geometri-
cal acoustics, was developed to model nonlinear and diffraction
effects near the axis of a finite amplitude sound beam [6]. Al-
though an arbitrary waveform sound beam can be expressed as
the superposition of Gaussian beams, it is complex and time-
consuming to solve this problem and the complexity and time
consumption increase exponentially with the increase of high
harmonics.

With the development of computer science and numerical
computation during the last few decades, various numerical
techniques have been proposed for the solution of the KZK
equation. Khokhlova et al. [7] developed an algorithm to nu-
merically solve the KZK equation in the frequency domain. In
his algorithm, the generation of high harmonics in a homoge-
neous medium radiated from a plane piston was calculated by
means of the Fourier transform. However, the problem of sound
propagation in multi-layered biological media is more practical
for most configurations, especially in the field of medical ultra-
sound.

For this reason, the transmission of a sound beam in lay-
ered media has been studied by many investigators. Zhang et al.
[8] applied the superposition technique to simplify the solu-
tion of the KZK equation at quasi and parabolic approxima-
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tions. Zhang et al. [9] studied the sound field in layered me-
dia such as water-alcohol-water by using the angular spectrum
approach. Saito [10] presented his theoretical and experimen-
tal studies for a focused source with a Gaussian distribution.
Landsberger and Hamilton [11] investigated the second har-
monic transmission and reflection at an interface for elastic
solids by using the angular spectrum approach. Li et al. [12]
studied the harmonic ultrasound fields through layered liquid
media. Makin et al. [13] studied the second harmonic gener-
ation in a sound beam reflected and transmitted at a curved
interface. Yang and Cleveland [14] developed a time-domain al-
gorithm to solve the KZK equation in three spatial dimensions
and they claimed their method can be extended to account for
propagation in inhomogeneous media. But they gave no details
of this method.

In this Letter, the transmission of a bounded sound beam
through multi-layered biological media is studied. The KZK
equation governs the sound propagation in each layer and sound
reflections at interfaces are assumed to be negligible due to the
fact that the acoustic impedance of biological tissues is close
to that of water. Furthermore, vertical incident transmission at
interfaces are considered for the case of weak focused trans-
ducer (the half aperture angle for the focused source is less
than 16°). The sound field at the interface depends on the re-
sult of the frontal sound field and the transmission coefficient
at the boundary surface. The validity of the theory is examined
by making a comparison between the predicted and measured
results.

2. Principles and methods
2.1. Sound propagation model

For an axisymmetric focused transducer with radius a and
focal length D, emitting sound beam in the positive z direction,
the normalized KZK equation can be described as
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where P = p/py is the pressure normalized to the source pres-
sure pg, T = w(t — z/cp) is the retarded time for the charac-
teristic frequency w and infinitesimal sound speed cg, A =
(1/R)(3d/9R) + (82/8R2) is the nondimensional transversal
Laplace operator with respect to R, in which R = r/c/z8 Dis the
wBDpo

dimensionless transverse coordinate, Z = z/D, N = 2 is
POCyH

the dimensionless nonlinearity parameter, in which pg is the
density of the medium and g =1+ %B /A is the coefficient of
nonlinearity, A = oD is the dimensionless absorption parame-

terand G =35 = 2‘:{32
the focal length.
The solution of Eq. (1) can be obtained by using the Fourier

series expansion

is the ratio of the Rayleigh distance and
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where C,, is the complex amplitude of the nth harmonic (—oo <
n < 00). Substituting Eq. (2) into Eq. (1) yields a set of coupled
nonlinear differential equations for the complex amplitude C,
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where C_, = C;;, in which C*, denotes the complex conjugate
of Cy,.

The first term on the right-hand side of Eq. (3) is a convo-
lution accounting for the nonlinear interaction of harmonics.
The second term accounts for the effect of absorption, which
is proportional to the square of frequency f. As mentioned
in Ref. [12], arbitrary frequency-dependent attenuation can be
modeled by replacing the an? factor by the actual attenuation
coefficient a(f). a = ag(f/fo)", where o is the sound atten-
uation coefficient at fy, fp is the frequency of the sound wave
and n = 2 for water and n = 1.1-1.4 for biological tissues. Dif-
fraction effects are accounted for by the third term.

For the case of an axisymmetrical sinusoidal sound wave
emitted by the focused source, the boundary condition (Z = 0)
can be described as [15]

p(r,0) = poexp(—ikR?/2D), R<1,
p(r,0)=0, R>1,

where k is wave number. The numerical solution for harmon-
ics C, can be obtained by solving Eq. (3). After obtaining C,,
we can reconstruct the waveform by means of Eq. (2).

A trade-off exists between the accuracy of solution and the
computational time. The radial and axial integral steps are set
tobe AR=1x 1072 and AZ =1 x 1073, respectively. Due
to the effects of diffraction and nonlinearity, the radial dimen-
sion of the sound beam will be enlarged and the energy will be
transferred from the fundamental harmonic to the higher har-
monics. Consequently, the spatial window in the radial direc-
tion of the beam and the harmonic numbers should be truncated
in order to reduce the computational time. To get the pressure
profiles while considering the stability and accuracy of the cal-
culation, we take C,, =0 when R > Ry,x and n > np,x, and
set Rmax = 10 and npyx = 40 in this study. When calculating
the waveforms, we adjust the size of the spatial window in the
radial direction and the number of harmonics at different axial
distances for different biological media so as to reduce the com-
putational time. The maximum number of the harmonics is 100
for this calculation.
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2.2. Propagation in multi-layered media

2.2.1. For the case of one intermediate layer

As shown in Fig. 1, a focused source located in a cylin-
drical coordinate system emits a sinusoidal sound wave with
frequency f and wave number k in the water. Sample I with
thickness d; is inserted perpendicular to the beam axis (in this
case sample II is absent). The position of the frontal and back
interfaces of the sample are Z; and Z;, respectively. The den-
sity, sound velocity, sound attenuation coefficient and acoustic
nonlinearity coefficient are denoted respectively as pj, ¢, «;,
and B; for water (j = 1) and for sample (j = 2).
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