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Frequency shift and aspect ratio of a rotating–oscillating liquid droplet
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We study the shape oscillations of a rotating liquid droplet numerically. The relation between the aspect
ratio of the droplet shape and the frequency shift is made clear, and the large-amplitude oscillations with
no frequency shift are demonstrated to be possible. Our results indicate that the accurate measurement
of oscillation frequencies, which are not suffered from frequency shift, could be conducted by controlling
the rotation rate and the amplitude, and thus more reliable surface tension would be obtained.
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A levitated liquid droplet is used to measure material properties
of molten metal, since the effect of container wall is eliminated for
a precise measurement [1–4]. Surface tension is, for instance, ob-
tained from the frequency of drop-shape oscillations. The relation
between material properties and oscillation parameters is based on
the linear theory [5], and small-amplitude oscillations are neces-
sary. Large-amplitude oscillations are, however, desirable from the
viewpoint of measurement. The effect of amplitude known as the
frequency shift is inevitable in the measurements even for small
amplitude [6–15].

The levitation technique is also used for containerless process-
ing of materials such as protein crystal growth [16,17] and for
measurement of properties of surfactant solutions [18] and molten
silicon [19]. The levitation of droplet is controlled by using elec-
tromagnetic force [1–3,13,14,19], electrostatic force [4,16,17], or
acoustic force [7,18] under the gravitational condition. Through
these studies, the frequency of drop-shape oscillations has been
shown to decrease with increasing amplitude experimentally
[7,10]. The decrease in oscillation frequency has also been calcu-
lated numerically for oscillations of incompressible drops [6,8–12,
15] and bubbles [8]. The numerical results were in good agreement
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with the experimental results. The effect of amplitude on the os-
cillation frequency has been discussed theoretically [20] by taking
into account the second order small deviation from the linearized
solution. The oscillation frequency was shown to decrease as the
amplitude increased, though the frequency shift was overestimated
for large-amplitude oscillations [15]. On the other hand, the effect
of rotation on the oscillation frequency has been discussed the-
oretically [21,22], experimentally [23,24] and numerically [15,25].
In contrast to the effect of amplitude, the oscillation frequency in-
creased by rotation [15,21,24]. Although the effects of amplitude
and rotation were shown separately, combined effects have not
yet been studied well. The relation between the frequency shift
and the pressure distribution in the droplet has recently been dis-
cussed numerically for a rotating–oscillating droplet [26]. It has
been shown that the relation between the amplitude and the rota-
tion rate is linear both for zero frequency shift and zero pressure
difference. However, it is not possible to observe the pressure
distribution in the droplet, and the condition for zero pressure
difference does not correspond correctly to the condition for zero
frequency shift. We present here systematic numerical simulations
for a rotating–oscillating liquid droplet. We discuss the combined
effects of amplitude and rotation on the oscillation frequency, and
show the relation between the shape of the droplet and the fre-
quency shift, which can be observed and controlled easily in the
experiments.
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Fig. 1. Time evolutions of normalized amplitude of rotating–oscillating droplets.

We solve the three-dimensional incompressible Navier–Stokes
equations numerically using the level set method [27]. The level
set function is defined as the normal distance from the interface,
and calculated by solving the transport equation using flow ve-
locities to obtain the position of the interface with zero level set
function. The level set method has been applied to track moving
interfaces and discontinuities in a wide variety of problems includ-
ing material science [28–30]. We simulate free-decay oscillations of
a rotating droplet, whose rotation axis is vertical and the same as
the oscillation axis. An ellipsoidal droplet is placed at the center of
the simulation region. The initial rotation is imposed as a rigid ro-
tation with a constant angular velocity. The initial amplitude in the
vertical direction is given as a normalized deformation from the
average shape of the rotating droplet. The average shape is given as
the rotating ellipsoid with the vertical radius determined before-
hand from the rotation of the spherical droplet [26]. The governing
equations are nondimensionalized [27], and the Reynolds number,
Re = ρLU/μ, and the Weber number, We = ρLU 2/σ , are 200–400
and 10–30, respectively, where ρ , L, U , μ, and σ are the den-
sity, the length, the velocity, the viscosity and the surface tension
of the droplet, respectively. The density of the droplet is set equal
to 1.0, and the density ratio and the viscosity ratio between the
droplet and the surrounding gas phase are both fixed at 0.01. The
finite difference method with second order accuracy is used, and
mass conservation of the droplet is especially taken into account
in the calculation of the level set function [31]. The number of cal-
culation nodes is 100 × 100 × 100–140 × 140 × 140 depending on
the amplitude. The spatial increment is 0.03 in all directions, and
the periodic boundary conditions are applied at all boundaries of
the simulation region. The volume of the droplet is the same as
that of a sphere with the radius of 1.0. The time step size was
0.0023–0.0040 so as to satisfy the stability conditions due to sur-
face tension and viscous terms [32]. It has been confirmed using
these calculation parameters for non-rotating droplets that the ef-
fect of noding was negligible and calculated oscillation frequencies
and viscous damping agreed satisfactorily with the theoretical val-
ues [15].

Fig. 1 shows time evolutions of the normalized amplitude for
Re = 200 and We = 20. The normalized amplitude is defined as the
deformation along the vertical axis normalized by the initial defor-
mation. Five cases are shown: the basic case with small rotation
rate, ω = 0.1, and small initial amplitude, �r = 0.02, two cases
with a different rotation rate and the same initial amplitude, and
two cases with a different initial amplitude and the same rotation
rate. It is seen in Fig. 1 that the oscillation period becomes small
as the rotation rate increases and becomes large as the ampli-
tude increases. In other words, the oscillation frequency increases

Fig. 2. Variations of flow field and droplet shape in vertical cross section.

as the rotation rate increases, while it decreases as the amplitude
increases. The calculated oscillation frequencies are 0.0998, 0.102,
and 0.106 for ω = 0.1,0.2, and 0.3, and 0.0988 and 0.0968 for
�r = 0.20 and 0.38, respectively. The theoretical value obtained
by the linear theory [5] is 0.100 for a non-rotating droplet, and the
agreement is satisfactory for the basic case. The damping curve
given by the linear theory [5] is also shown in Fig. 1. The damp-
ing constant in our simulation is 39.3, while the theoretical value
is 38.3, and the agreement is good though the linear theory is for
a non-rotating droplet. The oscillation frequency and the damping,
respectively, are related to the surface tension and the viscosity,
and we confirm that our numerical simulations are performed sat-
isfactorily.

Variations of velocity and pressure fields and droplet shape
are shown in Figs. 2 and 3 for Re = 200, We = 20, ω = 0.2 and
�r = 0.29. Fig. 2 shows the vertical cross section along the rota-
tion axis, while Fig. 3 shows the horizontal cross section through
the droplet center. High pressure regions are shown by dark grey.
In the vertical cross section in Fig. 2, internal flows appear in the
early stage from the top pole to the center, and from the cen-
ter to the equatorial direction, since the polar pressure is higher
than the equatorial pressure due to the difference of curvature as
shown at T = 1.15 and 2.31. Flow fields are also formed around
the droplet, and vortices appear near the surface at the location
between the pole and the equator. In the middle row in Fig. 2, the
droplet shape is oblate, and the equatorial pressure is higher than
the polar pressure. The internal flow is decelerated at T = 3.46
and 4.61. The internal flow is reversed, and the flow direction is
from the equator to the center and from the center to the pole at
T = 5.76. The internal flow is accelerated when the droplet shape
is oblate as shown at T = 6.92. The droplet shape becomes prolate
again and the polar pressure is higher than the equatorial pressure
at T = 8.07 and 9.22, and the internal flow is decelerated. The
pressure in the center is always in between the polar and equa-
torial pressures. The shape oscillation between prolate and oblate
continues. The variation of vertical flow field shown in Fig. 2 is
similar to that in a non-rotating droplet [15].

In the horizontal cross section shown in Fig. 3, outward flows
are seen in the rotating flow field at T = 1.15–4.61 correspond-
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