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Can Bohmian trajectories account
for quantum recurrences having classical periodicities?
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Abstract

Quantum systems in specific regimes display recurrences at times matching the period of the closed trajectories of the corresponding classical
system. This is the case of the excited hydrogen atom in a magnetic field, that we investigate from the point of view of the de Broglie–Bohm (BB)
interpretation of quantum mechanics. Individual BB trajectories do not possess the classical periodicities and cannot account for the quantum
recurrences, that can only be explained by considering the statistical ensemble of trajectories.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The manifestation of classical orbits has been found in a host
of quantum systems, displaying features such as scars of wave-
functions along periodic orbits of the corresponding classical
system or time recurrences appearing at the periods of classical
closed orbits [1]. These features have been observed experimen-
tally in systems such as mesoscopic devices or atoms in external
fields. From within a pure Schrödinger based approach, these
phenomena may appear as coming out of the blue. They are
however well understood by performing asymptotic h̄ expan-
sions. In particular it is straightforward to show (e.g. [2]) that
the evolution operator obtained from the path integral expres-
sion becomes to first order in h̄

〈x2, t2|e−iH(t2−t1)/h̄|x1, t1〉

= (2iπh̄)−D/2
∑

k

∣∣∣∣det
∂2Rk

∂x2∂x1

∣∣∣∣
1/2

(1)× exp

(
i

h̄

[
Rk(x2, x1; t2 − t1) − φk

]) + O(h̄).
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We have assumed for simplicity a time-independent Hamil-
tonian H in D-dimensional configuration space. The sum runs
on the classical paths k connecting x1 and x2 and Rk is the
classical action along the trajectory k; it satisfies the Hamilton–
Jacobi equation of classical mechanics [3]

(2)
∂R(x, t)

∂t
+ (∇R(x, t))2

2m
+ V (x) = 0.

The determinant is linked to the classical density and φk is an
additional phase that keeps track of the points where the clas-
sical amplitude is singular. The physical meaning of Eq. (1) is
simple: when h̄/R is small (a situation to be termed here ‘semi-
classical regime’) propagation in configuration space takes
place only along the classical paths, the sum reminding us
that the wave takes all the paths simultaneously with a given
weight—the classical amplitude.

An alternative interpretation of quantum phenomena hinges
on the existence of point-like particles following a well-defined
space–time trajectory—a quantum trajectory. The de Broglie–
Bohm (BB) theory is by far the best-known and most devel-
oped of hidden-variables theories, and BB trajectories have
been computed for a wide range of quantum systems (see [4]
and references therein as well as more recent work e.g. [5–7]).
One of the main motivations behind the BB theory is to bridge
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the gap between classical and quantum mechanics. Indeed the
interpretation of quantum phenomena by way of a statistical
distribution of particles moving along well-defined quantum
trajectories appears as an attractive manner of understanding
how classical mechanics can emerge from quantum phenom-
ena.

The main concern of this work is to analyze the role of
quantum trajectories as predicted by the de Broglie–Bohm in-
terpretation in quantum systems displaying the fingerprints of
classical trajectories. In such systems, the wavefunction is car-
ried by classical trajectories, and it is therefore of interest to
compare and contrast classical and quantum trajectories. This
will be done for a well known prototypical system, an excited
hydrogen atom in a magnetic field [8]. This system has been
heavily investigated, both theoretically and experimentally, in
the past 20 years and the success of its semiclassical analysis
has converted this system into a paradigm of “quantum chaos”.
We will briefly present the main characteristics of this system
in Section 2. We will then summarize the main properties of
BB trajectories and their expected behaviour in the semiclassi-
cal regime. Specific quantum trajectories for the hydrogen atom
in a magnetic field will be computed in Section 4. We will see
that observable quantum recurrences are ruled by the periodic-
ity of the periodic orbits of the corresponding classical system;
the role of the quantum trajectories in accounting for the recur-
rences will be discussed in Section 5.

2. The hydrogen atom in a magnetic field

The Hamiltonian describing the hydrogen atom in a mag-
netic field is given by (e.g. the review paper [8])

(3)H = p2

2m
+

(
qBLz

2mc
− q2

r
+ (x2 + y2)q2B2

8mc2

)
,

where B is the strength of the magnetic field oriented in the z

direction, m the mass of the electron, and r the distance of the
electron relative to the nucleus. The spherical symmetry of the
Coulomb field is broken by the magnetic field, leaving an axial
symmetry (invariance around the z axis). We will take Lz = 0
in what follows and we will assume B is sufficiently strong so
that perturbation theory is not necessarily valid. It can be shown
that H possesses a scaling property, from which it follows that
the classical dynamics does not depend independently on the
values of the energy E and of the intensity B of the field but on
the ratio ε = EB−2/3 known as the scaled energy. For ε → −∞
the dynamics is near-integrable whereas phase space is fully
chaotic for ε � −0.1 and of mixed nature for −0.8 � ε � −0.1.

The Schrödinger equation, obtained from the standard quan-
tization of H , is simplified by eliminating the trivial azimuthal
angle. We are left with a nonseparable 2-dimensional (�, z)
problem which does not admit analytical solutions; �, z are the
rectangular (cylindrical) coordinates in the axial plane. Obtain-
ing the bound energies En and the eigenfunctions ψEn(�, z) for
highly excited states therefore involves numerical computations
with large basis sizes. We will employ atomic units, the ener-
gies of the electron being labeled by En = −1/2n2 (where n

is of course not an integer). For small ε the energy eigenval-

Fig. 1. Recurrence spectrum of the hydrogen atom in a magnetic field obtained
from quantum computations (Fourier transform of the computed photoabsorp-
tion spectrum excited from the ground state with the laser polarized along the
field axis). The excitation energy spans the interval 77 < n < 155 and the mag-
netic field varies accordingly so that the scaled energy stays fixed at ε = −0.3,
thereby obtaining a scaled spectrum. The diagrams show the shape of the or-
bits closed at the nucleus of the corresponding (scaled) classical problem in the
(�, z) plane (B is along the vertical z axis). The arrows indicate the orbit whose
period matches the time of a given peak in the recurrence spectrum. Note that
more than one orbit can contribute to a given peak, and that the repetitions of an
orbit contribute to peaks appearing at multiple integer times of the fundamental
period (e.g., dotted arrow for the orbit A).

ues follow the well known pattern given by perturbation theory
(Zeeman effect) but as ε increases the spectrum becomes very
complex, as the spherical n/L degeneracy of the free-field atom
is totally broken and thousands of energy levels appear. The
interpretation of individual levels becomes meaningless, but
it was gradually realized that well-resolved peaks are visible
by taking a Fourier transform of the photoabsorption spectrum
(obtaining what is called a recurrence spectrum). These peaks,
related to the large scale fluctuations of the spectrum, appear at
times corresponding to periods of classical orbits closed at the
nucleus.

A typical computed recurrence spectrum involving photoab-
sorption from the ground state of the hydrogen atom is given
in Fig. 1. Sharp peaks are visible. Above each peak, we have
drawn the shape of the classical orbit whose period matches
the recurrence time of the peak. This plot arises from quantum
calculations, but recurrence spectra have been experimentally
observed in hydrogen [9] as well as other species of one elec-
tron (‘Rydberg’) atoms [10] and molecules [11] in external
fields.1 Purely semiclassical calculations have also been un-
dertaken, reaching an excellent agreement with experimental
observations and exact quantum calculations. The semiclassi-
cal formalism, known as ‘Closed orbit theory’ [12], starts from
the semiclassical propagator (1) and explains the recurrences
observed with classical periodicity by the propagation of the

1 The recurrence spectrum shown in Fig. 1 arises from the Fourier transform
of a scaled-energy photoabsorption spectrum where both the energy E and field
B are varied so as to keep the scaled energy ε constant (in a standard spec-
trum, B is fixed and only E varies). This results in considerably narrow peaks,
instead of wide overlapping structures that would be harder to resolve (most
experiments reported in [9,10] were performed employing scaled energy spec-
troscopy techniques).
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